стандартные коды в вычислительной технике

Стандартные коды в вычислительной технике

стандартные коды в вычислительной технике

7.1 СИСТЕМЫ СЧИСЛЕНИЯ

Любое неотрицательное число в позиционной системе счисления (СС) может быть представлено в виде:

стандартные коды в вычислительной технике

7.2 МАШИННОЕ ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ

Микропроцессоры обрабатывают упорядоченные двоичные наборы. Минимальной единицей информации является один бит.

стандартные коды в вычислительной технике

7.3 ЧИСЛА С ФИКСИРОВАННОЙ ТОЧКОЙ

Из этого примера видно, что в каждом разряде двух равных по модулю чисел складываются две единицы, что и определило название способа. Этот метод применяется наиболее часто, и когда говорят о дополнительном коде, то имеется в виду дополнительный «до 2-х» код.

7.4 ДИАПАЗОН ЦЕЛЫХ ЧИСЕЛ С ФИКСИРОВАННОЙ ТОЧКОЙ

7.5 ЧИСЛА С ПЛАВАЮЩЕЙ ТОЧКОЙ (ВЕЩЕСТВЕННЫЕ)

Последовательность расположения байтов

стандартные коды в вычислительной технике

7.6 ДИАПАЗОН ПРЕДСТАВЛЕНИЯ ВЕЩЕСТВЕННЫХ ЧИСЕЛ

7.7 ДВОИЧНО-ДЕСЯТИЧНЫЙ КОД

7.8 БУКВЕННО-ЦИФРОВОЙ КОД

Для вывода информации на устройства отображения, например дисплей или принтер, а также для ввода или передачи данных используются буквенно-цифровые коды. Буквы, цифры, математические символы, знаки препинания, символы для рисования линий, управляющие символы и некоторые другие кодируются однобайтовыми числами. Существует несколько разновидностей таких кодов, например: ASCII, КОИ-7, КОИ-8, альтернативный код ГОСТ, основной код ГОСТ и другие. ASCII и 7-ми битовый код для обмена информацией (КОИ-7) отображают первые 128 символов и входят в состав остальных кодировок. Дополнительные символы и русский алфавит входят в восьмибитовые расширенные коды (КОИ-8, альтернативный и основной). Общее число символов в этих кодах равно 256. Таблица некоторых кодов приведена ниже. Следует отметить, что нулевой код (NULL) не кодирует цифру ноль и вообще никак не отображается.

В Internet для русского языка используется кодировка КОИ-8. В настоящее время разработан и используется 16-ти битовый Unicode с 65536 различными симвоволами.

7.9 ВОСЬМИСЕГМЕНТНЫЙ КОД

Служит для отображения образа BCD или HEX цифры высвечиваемой на индикаторе в виде набора 0 и 1. Может быть принято следующее соответствие между битами и сегментами:

стандартные коды в вычислительной технике

Внизу приведен битовый набор для высвечивания цифры 4. Единицы обычно соответствуют светящимся сегментам.

7.10 НЕОДНОЗНАЧНОСТЬ ПРЕДСТАВЛЕНИЯ ДВОИЧНЫХ НАБОРОВ

Набор единиц и нулей хранящихся в регистре или ячейке памяти (двоичный набор) для микропроцессора ничего не означает. Пусть в регистре находится набор из восьми битов 10000110. Он может быть интерпретирован следующим образом, как:

Поэтому ответственность за интерпретацию двоичных наборов возлагается на программиста. Например, попытка сложить ASCII коды «1» + «2» не даст в сумме код «3», а даст 31(HEX) + 32(HEX) = 63(HEX), что соответствует коду латинской буквы «c».

Источник

Стандартные коды в вычислительной технике

Может возникнуть вопрос, почему, например, буква А кодируется именно этой комбинацией нулей и единиц, а не какой-нибудь другой? Очевидно, что разработчики вычислительной техники должны были договориться о том, как кодировать символы. Если этого не сделать, то на каждом компьютере будет свое собственное кодирование, что вызовет большие неудобства при необходимости переноса информации с одного компьютера на другой и, в конечном счете, приведет к «великой путанице».

Первоначально, в реальной жизни, именно так все и происходило. Каждая фирма, выпускающая компьютеры, часто разрабатывала и внедряла свои кодировки, что существенно затрудняло работу. До настоящего времени в мире существует множество различных 8-битовых кодов (КОИ-8, ДКОИ-8, MIC и т.д.).

В 1961 г. американцы решили положить конец этой «анархии» и разработали «Универсальный стандартный код для обмена информацией» ASCII (American Standard Code for Information Interchange) для персональных компьютеров. В нем закодированы все символы, имеющиеся на клавиатуре ПК, в определенном алфавитном порядке: чем дальше символ стоит от начала алфавита, тем больше его 8-разрядный код.

ASCII представляет собой таблицу, в которой коды могут быть представлены в десятичной, двоичной, 8- или 16-ричных системах счисления. Таблица состоит из двух частей.

Заметим, что фактически общая часть представляет собой 7-разрядный двоичный код, содержащий 128 различных комбинаций.

Следует отметить, что большие и маленькие буквы, как латинские, так и русские, имеют собственные коды.

Дополнительная часть может изменяться в зависимости от типа компьютера и страны, куда он поставляется. Фактически эта часть является расширением основного кода ASCII на основе международного стандарта ISO (International Standards Organization).

Таким образом, с учетом расширения ISO, в ASCII использованы не 128, а 256 комбинаций 8-битового кода. Возможность замены дополнительной части кода ASCII делает компьютер пригодным для использования в любой стране мира.

Сейчас существует несколько различных кодовых таблиц для русских букв (КОИ-8, СР-1251, СР-866, Mac, ISO), причем тексты, созданные в одной кодировке, могут неправильно отображаться в другой. Решается такая проблема с помощью специальных программ перевода текста из одной кодировки в другую.

Альтернативная кодировка не подошла для ОС Windows. Пришлось передвинуть русские буквы в таблице на место псевдографики, и получили кодировку Windows 1251 (Win-1251).

Виды компьютерной графики

Под компьютерной (машинной) графикой понимается совокупность методов и приемов преобразования при помощи ЭВМ данных в графическое представление или графического представления в данные. Под графическим представлением понимается изображение либо комплекс изображений (чертеж).

Изображение может быть черно-белым или цветным с эффектом освещенности (наличие теней, бликов, полутонов) либо без него.

Различают всего три вида компьютерной графики. Это растровая графика, векторная графика и фрактальная графика. Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий.

Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели сканируют иллюстрации, подготовленные художником на бумаге, или фотографии. В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры.

Большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку.

Программные средства для работы с векторной графикой наоборот предназначены, в первую очередь, для создания иллюстраций и в меньшей степени для их обработки. Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов.

Фрактальную графику редко применяют для создания печатных или электронных документов, но ее часто используют в развлекательных программах

Растровая графика

Растр (по-английски bitmap массив битов) это просто совокупность битов, расположенных на сетчатом поле.

Как известно, бит единица информации в компьютере, обозначающая ячейку памяти, которая может находиться во включенном (1) или выключенном (0) состоянии. Эти состояния можно отождествить с черным и белым цветом, т.е. соединив несколько битов, можно создать изображение из черных и белых точек. Таким образом растровое изображение напоминает лист клетчатой бумаги, на котором каждая клеточка закрашена черным или белым цветом, формируя при этом рисунок.

Из таких элементов (кирпичиков) собирается растровое изображение. Для обозначения количества пикселов в матрице рисунков по горизонтали и по вертикали используется коэффициент прямоугольности изображения. Этот коэффициент часто называют размером изображения и записывают в виде 800Х600 (800 пиксел по горизонтали и 600 строк по вертикали). Произведение этих двух чисел дает общее количество пиксел изображения. Так изображение с коэффициентом прямоугольности 800 600 состоит из 480000 пиксел.

Цвет каждого пиксела растрового изображения черный, белый или любой из спектра запоминается в компьютере с помощью комбинации битов. Очевидно, что чем больше битов для этого используется, тем больше оттенков цветов можно получить.

Число битов, используемых компьютером для каждого пиксела, называется битовой глубиной.

Размеры изображения и расположение пикселов в нем вот две основные характеристики, которые файл растрового изображения должен сохранить, чтобы создать картинку.

Следует помнить, что пиксел сам по себе не обладает никаким размером. Он всего лишь область памяти компьютера, хранящая информацию о цвете. Поэтому коэффициент прямоугольности изображения не соответствует никакой размерности. Размеры изображения хранятся отдельно, пикселы запоминаются один за другим, обычно как один большой блок данных. Таким образом, компьютер не сохраняет отдельные позиции для каждого пиксела, он всего лишь воссоздает сетку по размерам, заданным коэффициентом прямоугольности, а затем заполняет ее пиксел за пикселом.

Например: Коэффициент прямоугольности = 10 10 пиксел

Запись графического изображения происходит следующим образом:

Первые 10 ячеекВторые 10 ячеекТретьи 10 ячеек и т.д.

Воссоздание графического изображения:

стандартные коды в вычислительной технике

Так как пикселы не имеют собственных размеров, они приобретают их при выводе изображения на некоторое устройство монитор, принтер. Для того чтобы помнить действительные размеры (например, в дюймах) растрового рисунка, файлы растровой графики иногда хранят разрешающую способность растра.

Разрешающая способность это число элементов в заданной области, задается, как правило, в пикселах на дюйм (пиксел/д).

Если имеется изображение размером 72 72 пиксел и разрешающая способность растра 72 пиксел/д, то растровое изображение будет занимать один квадратный дюйм.

Растровые изображения содержат большое количество пикселов, каждый из которых занимает определенную часть памяти. Например, отсканированное с фотографии цветное изображение может занимать десятки и сотни Мбайт. Наибольшее влияние на количество памяти, занимаемой растровым изображением, оказывают три фактора:

ü размер изображения (коэффициент прямоугольности);

ü битовая глубина изображения;

ü формат файла, используемый для хранения изображения.

Очевидно, что, чем больше размер и битовая глубина изображения, тем больше размер файла. Следует заметить, что разрешающая способность изображения на величину файла никак не влияет. Она оказывает эффект только при сканировании изображения и то лишь потому, что определяет, сколько пикселов будет создаваться.

Достоинства растровой графики:

1. Растровые изображения выглядят вполне реалистично. Это связано со свойствами человеческого глаза: он приспособлен для восприятия реального мира как огромного набора дискретных элементов, образующих предметы.

2. Легко управлять выводом изображения на устройства представляющие изображения в виде совокупности точек принтеры, фотонаборные автоматы.

Недостатки растровой графики:

1. Большой объем памяти, требуемый для хранения изображения хорошего качества.

2. Трудности редактирования изображений. Так как сами изображения занимают много памяти компьютера, то, очевидно, и для их редактирования потребуется так же много памяти. Кроме того, применение фильтров специальных эффектов к таким изображениям может занять от нескольких минут до часа в зависимости от используемого оборудования.

Векторная графика

В отличии от растровой графики, в которой для создания изображений используются большие массивы отдельных точек, в векторной графике изображения строятся с помощью математических описаний объектов, например окружностей, линий.

Разумеется, в растровой графике тоже существуют линии, но там они рассматриваются как комбинации точек. Чем длиннее растровая линия, тем больше памяти она занимает. В векторной графике объем памяти, занимаемый линией, не зависит от размеров линии, поскольку линия представляется в виде формулы, а точнее говоря, в виде нескольких параметров. Что бы мы ни делали с этой линией, меняются только ее параметры, хранящиеся в ячейках памяти. Количество же ячеек остается неизменным для любой линии.

В основе векторной графики лежат математические представления о свойствах геометрических фигур.

Как мы сказали выше, простейшим объектом векторной графики является линия. Поэтому в основе векторной графики лежит прежде всего математическое представление линии.

Ключевым моментом векторной графики является то, что она использует комбинацию компьютерных команд и математических формул для описания объектов. Векторную графику называют объектно-ориентированной или чертежной графикой.

Простые объекты двумерной графики дуги, линии, эллипсы, окружности, трехмерной графики сферы, кубы и т.п. называются примитивами и используются для создания более сложных объектов. В векторной графике изображения создаются путем комбинации различных объектов.

Все объекты имеют атрибуты (свойства). К этим свойствам относятся:

форма линии, ее толщина, цвет, характер линии (сплошная, пунктирная и т. п.). Замкнутые линии имеют свойство заполнения. Внутренняя область замкнутого контура может быть заполнена цветом, текстурой.

Файлы векторной графики могут содержать несколько различных элементов:

1. наборы векторных команд для создания изображения;

2. таблицы информации о цвете рисунка;

3. данные о шрифтах, которые могут быть использованы на рисунке и т.д.

Достоинства векторной графики:

1. Она использует все преимущества разрешающей способности любого устройства вывода, что позволяет изменять размеры векторного рисунка без потерь его качества.

2. Векторная графика позволяет редактировать отдельные части рисунка, не оказывая влияния на остальные (в растровых изображениях пришлось бы редактировать каждый пиксел).

Недостатки векторной графики:

1. Рисунки часто выглядят достаточно искусственно, так как основным компонентом векторного рисунка является прямая линия, а она в природе встречается достаточно редко. Поэтому до недавнего времени векторная графика использовалась только для технических иллюстраций, чертежей.

2. Возможны проблемы при печати, как правило, сложных рисунков на отдельных типах принтеров из-за того что не все команды могут ими правильно интерпретироваться.

стандартные коды в вычислительной технике

стандартные коды в вычислительной технике

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

стандартные коды в вычислительной технике

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник

Кодирование информации, применяемое в ЭВМ

Лекция № 2 Кодирование информации. Коды, применяемые в ЭВМ: двоичные, позиционные, комбинационные, самокорректирующиеся, параллельные, последовательные.

Формы представления чисел : с фиксированной и плавающей точкой.

1.Коды, применяемые в ЭВМ

Каким образом обрабатывается информация в компьютере и как обеспечить обмен информацией между пользователем и ЭВМ?

Процесс приема и передачи информации можно изобразить на схеме:

стандартные коды в вычислительной технике

Кодирование – операция, связанная с переходом от исходной формы представления информации в форму, удобную для хранения, передачи или обработки.

Декодирование – связано с обратным переходом к исходному представлению информации.

В настоящее время существуют разные способы кодирования и декодирования информации в компьютере.

Выбор способа зависит от вида информации, которую необходимо кодировать: текст, число, графическое изображение и т.д.

ЭВМ может обрабатывать информацию, представленную только в числовой форме. Любая другая информация (текстовая, графическая) преобразуется в числовую информацию. Так, например, при вводе текста, каждый символ кодируется определенным числом (существуют специальные таблицы кодировки, наиболее известные и распространенные коды ASCII), а при выводе наоборот, каждому числу соответствует изображение определенного символа.

Восемь двоичных разрядов позволяют закодировать 2 8 =256 символов, этого достаточно, чтобы закодировать любую букву, цифру или служебный символ. Нажатие клавиши на клавиатуре приводит к тому, что сигнал посылается в компьютер в виде двоичного числа, которое хранится в кодовой таблице.

2. Кодовая таблица символов

Кодовая таблица символов — это внутреннее представление символов в компьютере. Во всем мире в качестве стандарта принята таблица ASCII (American Standart Code for Information Interchange) – Американский стандартный код для обмена информацией.

Первые 128 символов (от 0 до 127) – это цифры, прописные и строчные буквы латинского алфавита, управляющие символы. Вторая половина кодовой таблицы (от 128 до 255) предназначена для национальных символов (в том числе кириллицы), математических символов и так называемых псевдографических символов, которые используются для рисования рамок.

Нужно помнить о трех особенностях алфавита в кодовой таблице и их следствия:

1) прописные и строчные буквы представлены разными кодами, т.е. “А” и “а” – разные объекты;

2) при упорядочивании слов по алфавиту сравниваются между собой десятичные коды букв. Поэтому, чтобы избежать недоразумений, если не указано “нечувствителен к регистру”, используйте только латинский или русский алфавит и только прописные или только строчные первые буквы. Необходимо помнить, что любая цифра “меньше” любой буквы, код латинских букв “меньше” чем русских;

3) Многие латинские и русские буквы имеют визуально неразличимое начертание, но разные коды.

Итак, компьютер способен распознавать только значения бита. Однако он редко работает с конкретными битами в отдельности, а совокупность из 8 битов, воспринимаемая компьютером как единое целое, называется байтом.

Вся работа компьютера – это управление потоками байтов, которые устремляются в компьютер с клавиатуры или дисков (или по линии связи), преобразовываются по командам программ, запоминаются временно или записываются на постоянное хранение на магнитный диск, а также выводятся на экран дисплея или бумагу принтера в виде букв, цифр, значков.

стандартные коды в вычислительной технике

стандартные коды в вычислительной технике

3.Кодирование информации. Кодирование данных в ЭВМ

В ЭВМ применяется двоичная система счисления, т.е. все числа в компьютере представляются с помощью нулей и единиц, поэтому компьютер может обрабатывать только информацию, представленную в цифровой форме.

Для преобразования числовой, текстовой, графической, звуковой информации в цифровую необходимо применить кодирование.

Кодирование – это преобразование данных одного типа через данные другого типа. В ЭВМ применяется система двоичного кодирования, основанная на представлении данных последовательностью двух знаков: 1 и 0, которые называются двоичными цифрами (binary digit – сокращенно bit).

Целые числа кодируются двоичным кодом довольно просто (путем деления числа на два). Для кодирования нечисловой информации используется следующий алгоритм: все возможные значения кодируемой информации нумеруются и эти номера кодируются с помощью двоичного кода.

Кодирование чисел

Есть два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.

Кодирование целых чисел производиться через их представление в двоичной системе счисления: именно в этом виде они и помещаются в ячейке. Один бит отводиться при этом для представления знака числа (нулем кодируется знак «плюс», единицей – «минус»).

Для кодирования действительных чисел существует специальный формат чисел с плавающей запятой. Число при этом представляется в виде:

стандартные коды в вычислительной технике

стандартные коды в вычислительной технике

Кодирование координат

Закодировать можно не только числа, но и другую информацию, например, о том, где находится некоторый объект. Величины, определяющие положение объекта в пространстве, называются координатами. В любой системе координат есть начало отсчёта, единица измерения, масштаб, направление отсчёта, или оси координат. Примеры систем координат – декартовы координаты, полярная система координат, шахматы, географические координаты.

Кодирование текста

Для представления текстовой информации используется таблица нумерации символов или таблица кодировки символов, в которой каждому символу соответствует целое число (порядковый номер). Восемь двоичных разрядов могут закодировать 256 различных символов.

Существующий стандарт ASCII (сокращение от American Standard Code for Information Intercange – американский стандартный код для обмена информацией; 8 – разрядная система кодирования) содержит две таблицы кодирования – базовую и расширенную. Первая таблица содержит 128 основных символов, в ней размещены коды символов английского алфавита, а во второй таблице кодирования содержатся 128 расширенных символов.

Так как в этот стандарт не входят символы национальных алфавитов других стран, то в каждой стране 128 кодов расширенных символов заменяются символами национального алфавита. В настоящее время существует множество таблиц кодировки символов, в которых 128 кодов расширенных символов заменены символами национального алфавита.

Так, например, кодировка символов русского языка Widows – 1251 используется для компьютеров, работающих под ОС Windows. Другая кодировка для русского языка – это КОИ – 8, которая также широко используется в компьютерных сетях и российском секторе Интернет.

В настоящее время существует универсальная система UNICODE, основанная на 16 – разрядном кодировании символов. Эта 16 – разрядная система обеспечивает универсальные коды для 65536 различных символов, т.е. в этой таблице могут разместиться символы языков большинства стран мира.

Кодирование графической информации

В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие группы – растровую и векторную графику.

Растровые изображения представляют собой однослойную сетку точек, называемых пикселями (pixel, от англ. picture element). Код пикселя содержит информации о его цвете.

Цветные изображения воспринимаются нами как сумма трёх основных цветов – красного, зелёного и синего. Например, сиреневый = красный + синий; жёлтый = красный + зелёный; оранжевый = красный + зелёный, но в другой пропорции. Поэтому достаточно закодировать цвет тремя числами – яркостью его красной, зелёной и синей составляющих. Этот способ кодирования называется RGB (Red – Green – Blue). Его используют в устройствах, способных излучать свет (мониторы). При рисовании на бумаге действуют другие правила, так как краски сами по себе не испускают свет, а только поглощают некоторые цвета спектра. Если смешать красную и зелёную краски, то получится коричневый, а не жёлтый цвет. Поэтому при печати цветных изображений используют метод CMY (Cyan – Magenta – Yellow) – голубой, сиреневый, жёлтый цвета. При таком кодировании красный = сиреневый + жёлтый; зелёный = голубой + жёлтый.

В противоположность растровой графике векторное изображение многослойно. Каждый элемент такого изображения – линия, прямоугольник, окружность или фрагмент текста – располагается в своем собственном слое, пиксели которого устанавливаются независимо от других слоев. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т.д.) Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.

Объекты векторного изображения, в отличие от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость).

Кодирование звука

Как всякий звук, музыка является не чем иным, как звуковыми колебаниями, зарегистрировав которые достаточно точно, можно этот звук безошибочно воспроизвести. Нужно только непрерывный сигнал, которым является звук, преобразовать в последовательность нулей и единиц. С помощью микрофона звук можно превратить в электрические колебания и измерить их амплитуду через равные промежутки времени (несколько десятков тысяч раз в секунду). Каждое измерение записывается в двоичном коде. Этот процесс называется дискретизацией. Устройство для выполнения дискретизации называется аналогово-цифровым преобразователем (АЦП). Воспроизведение такого звука ведётся при помощи цифро-аналогового преобразователя (ЦАП). Полученный ступенчатый сигнал сглаживается и преобразуется в звук при помощи усилителя и динамика. На качество воспроизведения влияют частота дискретизации и разрешение (размер ячейки, отведённой под запись значения амплитуды). Например, при записи музыки на компакт-диски используются 16-разрядные значения и частота дискретизации 44 032 Гц.

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Издавна используется достаточно компактный способ представления музыки – нотная запись. В ней с помощью специальных символов указывается высота и длительность, общий темп исполнения и как сыграть. Фактически, такую запись можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 г. ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI (Musical Instrument Digital Interface). При таком кодировании запись компактна, легко меняется инструмент исполнителя, тональность звучания, одна и та же запись воспроизводится как на синтезаторе, так и на компьютере.

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.

Есть и другие форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18 – 20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает примерно 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *