С чем связано образование залежей каменного угля

Происхождение угля

С чем связано образование залежей каменного угля

Уголь – это ископаемое топливо, образовавшееся из частей древних растений под землей без доступа кислорода. Угольная масса формируется в условиях, когда гниющий растительный материал накапливается быстрее, чем происходит его бактериальное разложение.

Идеальная обстановка для этого создаётся в болотах, где стоячая вода, обеднённая кислородом и обогащенная органическими кислотами, препятствует жизнедеятельности бактерий разрушающих погибшие растения. Так возникает торф – исходный материал для образования угля. Если затем происходит его захоронение под наносами, то торфяная масса под воздействием давления и температуры, теряя воду и газы, преобразуется в угольные пласты.

В древних торфяных болотах, начиная с девонского периода (примерно 400 млн. лет назад), накапливалось органическое вещество, из которого формировались ископаемые угли. Большинство промышленных месторождений каменного угля относится к этому периоду, хотя известны и более молодые месторождения.

На первой стадии процесса углеобразования торф превращается в бурый уголь с содержанием углерода 65-70 % (масс.). Углерод в углях находится в составе различных органических соединений, часть из которых при нагревании переходит в состав летучих веществ (летучий углерод), а часть остаётся в коксовом остатке (нелетучий углерод). Здесь и далее, если прямо не указано, о каком углероде идёт речь, имеется в виду их сумма (общий углерод).

Бурый уголь залегает на глубине примерно 1 км и содержит до 43 % (масс.) влаги и до 50 % (масс.) летучих веществ. При дальнейшем опускании на глубину до 3 км, из бурого угля образуется каменный уголь. Угли, которые к нашему времени стали каменными, начали образовываться в палеозое, преимущественно в каменноугольном периоде, примерно 300-350 млн. лет назад из остатков древовидных папоротников, хвощей и плаунов, произраставших в то время в огромных количествах, а также первых голосеменных растений. Содержание углерода в каменном угле, в зависимости от его сорта, составляет от 75 до 95 % (масс.), они содержат до 12 % (масс.) влаги и до 32 % (масс.) летучих веществ.

Самый древний из ископаемых углей – антрацит – образуется из каменного угля при дальнейшем повышении температуры и давления на глубине до 6 км. Он содержит около 95 % (масс.) углерода, и имеет наиболее высокую степень «углефикации».

Источник

Американские ученые раскрыли тайну образования каменного угля

С чем связано образование залежей каменного угля

За образование по крайней мере некоторых угольных месторождений и производство метана в угольных пластах несут ответственность микроорганизмы. Такой вывод был сделан группой американских ученых под руководством Макса Ллойда из Университета штата Пенсильвания, протестировавшей образцы угля со всего мира. Статья об этом опубликована в журнале Science.

Новое открытие имеет большое прикладное значение — в первую очередь с точки зрения оценки темпов регенерации метанового топлива, откачиваемого с помощью дорогостоящих и быстро иссякающих скважин, так как именно этот механизм лежит в основе одной из первых стадий формирования угля — и по этому поводу ведутся частые дискуссии. Исследователи изучили метоксильные группы в образцах угля со всего мира и оценили соотношение в них стабильных и нестабильных изотопов углерода для того, чтобы показать, что исходный органический материал становится углем именно под действием микробов, а не просто обычных химических реакций.

Метоксильная группа состоит из атома углерода с тремя атомами водорода, присоединенными к атому кислорода. Атом кислорода может присоединяться к любому количеству мест в более крупной молекуле. В случае угля он присоединяется к атому углерода в одной из кольцевых структур угля. «Если бы вы опросили геохимиков, то большинство из них заявило бы, что уголь образуется под действием температур, кислот или катализаторов, — объясняет Макс Ллойд. — Однако наши результаты говорят об ином. Они показывают, что именно микробы перерабатывают метоксильные группы угля, преобразуя при этом сам уголь и попутно производя метан».

Уголь образуется, когда растительный материал в заболоченных лесах попадает в воду и быстро захоранивается. Органический материал проходит стадию торфа, затем он становится лигнитом, потом суббитоминозным, или бурым углем, битуминозным углем и, наконец, антрацитом, достигая в этом случае максимальной степени углефикации. Антрацитовый уголь состоит в основном из углерода, в то время как бурый уголь по-прежнему содержит много растительных остатков. Кроме того, в поровых пространствах между пластами угля обитают анаэробные микробы, производящие специальные ферменты, которые отрывают метоксильные группы с образованием — в конечном счете — метана.

Стабильные изотопы углерода могут содержать 12 или 13 нуклонов, при этом углерод-13 немного тяжелее и менее распространен в природе. Биологические организмы обычно предпочитают один изотоп другому, поэтому по процентному содержанию изотопов как раз и можно доказать биологическое происхождение угля.

Источник

Ключевую роль в образовании каменного угля играли микроорганизмы

С чем связано образование залежей каменного угля С чем связано образование залежей каменного угля

Рис. 1. Четыре стадии углефикации растительных остатков (слева направо): древесина, лигнит (lignite), суббитуминозный уголь (sub-bituminous coal), битуминозный (каменный) уголь (bituminous coal). Здесь образцы названы в соответствии с принятой на Западе классификацией углей. Российская классификация несколько отличается от западной: вместо термина «суббитуминозый уголь» используют понятие «бурый уголь», но это не абсолютные синонимы. Границы выделения суббитуминозного и бурого угля по содержанию углерода и прочим параметрам в разных странах различаются. Фото с сайта eurekalert.org

По мере повышения давления и температуры (при этом главным фактором является температура), а также с течением времени торф переходит в бурый уголь, а затем — в каменный. При этом в составе породы увеличивается количество битумов, поэтому на Западе уголь делят на суббитуминозный и битуминозный. При достижении температуры выше примерно 235°C битумы разрушаются (процесс дебитумизации), и уголь созревает до высшей степени углефикации — антрацита.

На каждой стадии процесса в породе увеличивается содержание углерода: в суббитуминозном угле его 35–50%, в битуминозном — 50–80%, в антраците — 80–100%. Цифры эти весьма условные — разные страны, а порой и разные компании пользуются своими шкалами. Для примера, в России чаще всего используют такие значения: бурый уголь — 60–75%, каменный уголь — 75–90%, антрацит — 90–100%. Но суть от этого не меняется. Главное, что в процессе углефикации в созревающем угле нарастает концентрация углерода, уменьшается содержание водорода и летучих веществ, повышается теплотворная способность.

Известно, что переход бурых углей в каменные сопровождается битумизацией и пиковым образованием метана. Поэтому при разработке средне- и низколетучих битуминозных углей особое внимание уделяют мерам предосторожности против взрывов метана. Возможно, процесс деметанирования (удаления из пород метана) как-то связан с битумизацией, либо он является следствием метаморфизма. Пока у ученых нет точного ответа на этот вопрос.

Но не зная происхождения метана угольных пластов (МУП), трудно предсказать риски взрывов, возникающие при добыче угля и пластового газа, а также корректно проводить оценку запасов этого сырья, без которой невозможно начинать реализацию крупных проектов. Бурение добычных скважин — дорогостоящая процедура, и ни одна компания не начнет его, пока не будет иметь подтвержденный объем запасов.

Авторы исследования, опубликованного недавно в журнале Science, решили проверить гипотезы образования МУП с помощью биогеохимических и изотопных методов. Они исходили из того, что первичными «кирпичиками» пластового метана являются метоксильные группы (см. methoxy group), входившие изначально в состав растений, из которых образовался уголь.

С чем связано образование залежей каменного угля

Рис. 2. Строение метоксильной группы. Рисунок с сайта en.wikipedia.org

С химической точки зрения любая метоксильная группа представляет собой метильную группу (-СН3), связанную через атом кислорода с какой-либо органической молекулой (рис. 2). Атом кислорода может присоединяться к любому количеству мест в более крупной молекуле. В случае угля он присоединяется к одному из атомов углерода, входящего в состав кольцевых структур.

В 1885 году австрийский химик Симон Цейзель разработал метод количественного определения содержания метоксильных групп в тканях растений. Эти функциональные группы встречаются во всех наземных растениях и составляют до 7% древесины. В основном они входят в состав лигнина — вещества, из которого сложены одеревеневшие стенки растительных клеток. Во время гумификации растительной массы и дальнейших процессов преобразования органических остатков содержание метоксилов в верхних слоях почвы увеличивается до 10% от общего веса, поскольку лигнин более стабилен, чем другие растительные компоненты, такие как целлюлоза или крахмал, которые теряются на начальном этапе гумификации.

Метаногенез — процесс образования метана анаэробными археями — хорошо известен. Впервые термофильные метаногенные археи Methermicoccus shengliensis были обнаружены в 2007 году в скважинных водах нефтегазового месторождения Шэнли в Китае. Позднее японские геологи зафиксировали процесс микробного метаногенеза в пластах бурого угля, залегающих на глубине 1,5–2,5 км ниже морского дна в Тихом океане у берегов Японии (F. Inagaki et al., 2015. Exploring deep microbial life in coal-bearing sediment down to

2.5 km below the ocean floor). Пиковые концентрации микробных клеток были приурочены к слоям лигнита. На микробный генезис метана указывали также изотопные составы углерода метана и углекислого газа в слоях, а также другие биомаркеры.

С чем связано образование залежей каменного угля С чем связано образование залежей каменного угля

Рис. 3. Общая схема образования метана угольных пластов при участии микроорганизмов: А — анаэробные микробы в порах угля; В — выделение микроорганизмами внеклеточных ферментов, катализирующих процесс деметилирования; С — отделение метоксильных групп (прекурсоров метана) от углеродных колец. Рисунок с сайта sc-cms.psu.edu

То есть сама возможность микробного происхождения метана угольных пластов уже была доказана ранее, но оставалось непонятным, насколько этот процесс широко распространен, и имеет ли он место на больших глубинах, при метаморфических преобразованиях бурого угля в каменный.

Авторы обсуждаемого исследования собрали образцы углей разной степени зрелости (от древесины до битуминозного угля) из угольных месторождений по всему миру, измерили изотопные отношения углерода в их метоксильных группах, нанесли на диаграммы изотопного фракционирования и сравнили результаты с эталонными графиками рэлеевского фракционирования (см. Rayleigh fractionation), а также с результатами экспериментов, в которых они моделировали различные режимы абиогенного деметелирования. Полученные учеными профили изотопного фракционирования углерода однозначно указывают на то, что образование метана происходило при участии микроорганизмов. При альтернативных вариантах — под действием тепла, кислотности или каталитических реакций — профили были бы совсем другими (рис. 4).

С чем связано образование залежей каменного угля С чем связано образование залежей каменного угля

Рис. 4. Профили изотопного фракционирования углерода метоксильных групп при абиогенном (А) и биогенном (В) образовании метана. По горизонтали — концентрация метоксильных групп; по вертикали — изотопное отношение δ 13 C в метоксильных группах (δ 13 C — отклонение изотопного отношения 13 C/ 12 C от сигнатуры стандартного образца PDB — белемнита мелового периода Belemnitella americana формации Пи-Ди (см. Peedee Formation) в Южной Каролине). Цветные поля, ограниченные расходящимися линиями, — теоретически допустимые области деметилирования (рэлеевское фракционирование). Значки — результаты анализов: красные квадраты — древесина; синие ромбы — лигниты из буроугольного месторождения Белхатув в Польше; зеленые круги — лигниты и суббитуминозные угли с полуострова Симокита в Японии; желтые треугольники — зрелые суббитуминозные угли из угольного бассейна Паудер-ривер (Powder River) в США. Ro — коэффициент отражательной способности витринита (vitrinite — один из основных компонентов углей), который обычно используется в качестве показателя термической зрелости углей. Анализ битуминозных углей из каменноугольных бассейнов Сан-Хуан (San Juan) и Мичиган (Michigan) с Ro от 0,5 до 0,8% не попал на диаграмму из-за практически полного отсутствия в их составе метоксильных групп (при этом бассейн Сан-Хуан содержит крупнейшие в мире запасы МУП). Пунктирными линиями на правой диаграмме показаны различные режимы фракционирования при геохимических реакциях с участием микробных ферментов. Рисунок из обсуждаемой статьи в Science

Авторы считают, что им удалось получить однозначный результат, указывающий на биогенное происхождение МУП, благодаря тому, что они изучали процессы изотопного фракционирования углерода в метоксильных группах. Ранее все исследования были посвящены оценке изотопных отношений углерода в метане, и результаты были весьма неоднозначными (рис. 5).

С чем связано образование залежей каменного угля

Рис. 5. Сравнительная гистограмма распределения значений δ 13 C в метане: из угольных пластов (синие столбики) и обычных залежей углеводородов (зеленые столбики). Пунктирной линией обозначена верхняя граница первично биогенного метана. Рисунок из обсуждаемой статьи в Science

На рис. 5 видно, что образцы метана из угольных пластов расположены как слева от верхней границы биогенного метана, так и справа от него, где, по идее, должны находиться абиогенные источники. «Принципы, разработанные для традиционных углеводородных коллекторов, не работают в угольных пластах», — отмечают авторы статьи.

По мнению исследователей, объясняется это тем, что деметилирование начинается еще на стадии преобразования лигнитов в бурые угли. При этом, в силу биогенной природы процесса, из системы изымается 12 С, а вмещающая толща со временем все больше и больше обогащается 13 С. Поэтому, когда доходит до стадии анаэробного разложения бурых углей и массового образования метана, количество легкого изотопа в системе ограниченно (рис. 6). Это и объясняет загадочное смещение δ 13 C между микробным метаном из угольных пластов и традиционных источников.

С чем связано образование залежей каменного угля

Рис. 6. Общая схема образования метана угольных пластов: Litter — мертвый покров; Humic material — гумусовый материал; Peat — торф; Lignite — лигнит; Coal — уголь. В центре — образование метана (СН4, в весовых процентах). Справа — изменение изотопных отношений углерода углей. Рисунок из статьи F. Keppler. A surprise from the deep

Еще один важный вывод касается прогнозов газоносности угольных пластов. Некоторые разработчики предполагали, что если «запустить» в скважины, пробуренные в угольной тоще, метаногенов, то процесс газообразования продолжится и таким образом можно будет увеличить ресурс скважин по добыче МУП. Однако ученые указывают на то, что добавление микробов или питательных веществ не приведет к образованию большего количества метана, так как этот газ образуется только на стадии созревания угля, а затем, после того как метилотрофы «отрезали» все метоксильные группы, прекращается. Таким образом, МУП — это остаточный газ, который сохраняется в пластах каменного угля от предыдущей стадии углефикации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *