С чем связана искусственная радиоактивность

Радиоактивность вокруг нас: естественная и искусственная радиоактивность

С чем связана искусственная радиоактивность

Радиоактивность вокруг нас: естественная и искусственная радиоактивность

Искусственная радиоактивность

Естественная радиация была всегда: до появления человека, и даже нашей планеты. Радиоактивно всё, что нас окружает: почва, вода, растения и животные. В зависимости от региона планеты уровень естественной радиоактивности может колебаться от 5 до 20 микрорентген в час. По сложившемуся мнению, такой уровень радиации не опасен для человека и животных, хотя эта точка зрения неоднозначна, так как многие ученые утверждают, что радиация даже в малых дозах приводит к раку и мутациям. Правда, в связи с тем, что повлиять на естественный уровень радиации мы практически не можем, нужно стараться максимально оградить себя от факторов, приводящих к значительному превышению допустимых значений.

Существует три основных источника естественной радиации:

1. Космическое излучение и солнечная радиация — это источники колоссальной мощности, которые в мгновение ока могут уничтожить и Землю, и всё живое на ней. К счастью, от этого вида радиации у нас есть надёжный защитник — атмосфера. Впрочем, интенсивная человеческая деятельность приводит к появлению озоновых дыр и истончению естественной оболочки, поэтому в любом случае следует избегать воздействия прямых солнечных лучей. Интенсивность влияния космического излучения зависит от высоты над уровнем моря и широты. Чем выше Вы над Землей, тем интенсивнее космическое излучение, с каждой 1000 метров сила воздействия удваивается, а на экваторе уровень излучения гораздо сильнее, чем на полюсах.

Вспышки на солнце — один из источников «естественного» радиационного фона.

Ученые отмечают, что именно с проявлением космической радиации связаны частые случаи бесплодия у стюардесс, которые основное рабочее время проводят на высоте более десяти тысяч метров. Впрочем, обычным гражданам, не увлекающимися частыми перелетами, волноваться о космическом излучении не стоит.

Уровень радиации в салоне самолета на высоте 10 000 метров превышает естественный в 10 раз.

2. Излучение земной коры. Помимо космического излучения радиоактивна и сама наша планета. В её поверхности содержится много минералов, хранящих следы радиоактивного прошлого Земли: гранит, глинозём и т.п. Сами по себе они представляют опасность лишь вблизи месторождений, однако человеческая деятельность ведёт к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов, в атмосферу после сжигания угля, на участок в виде фосфорных удобрений, а затем и к нам на стол в виде продуктов питания.

Известно, что в кирпичном или панельном доме уровень радиации может быть в несколько раз выше, чем естественный фон данной местности. Таким образом, хоть здание и может в значительной мере уберечь нас от космического излучения, но естественный фон легко превышается от использования опасных материалов. Уберечься от таких «сюрпризов» можно, только используя дозиметры.

Это единственный способ померить уровень радиации в бытовых условиях и не приобретать опасные с радиационной точки зрения материалы.

3. Радон — это радиоактивный инертный газ без цвета, вкуса и запаха. Он в 7,5 раз тяжелее воздуха, и, как правило, именно он становится причиной радиоактивности строительных материалов. Радон имеет свойство скапливаться под землей в больших количествах, на поверхность же он выходит при добыче полезных ископаемых или через трещины в земной коре.

Радон активно поступает в наши дома с бытовым газом, водопроводной водой (особенно, если её добывают из очень глубоких скважин), или же просто просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона, в отличие от других источников радиации, очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа уменьшится в несколько раз.

Мало кто слышал о том, что любой строительный материал может стать источником радиоактивного излучения.

Чем это опасно для человека и животных? На самом деле, радиация не опасна, если она ограничена небольшой дозой.

К сожалению, современные дорогостоящие материалы нередко имеют высокую степень радиации. Встречаются случаи, когда одна деревянная конструкция несет в себе до 60% допустимой дозы облучения.

В состав многих строительных материалов могут входить радиоактивные уран 238, калий 40 и торий 232, а также прочие радионуклеиды. В любом случае, конечным продуктом распада подобных элементов будет радон 222. Минеральные глины и калиевые, а также полевые шпаты обычно имеют повышенное содержание радионуклеидов.

Наиболее сильное радиоактивное излучение способен давать графит. У данного материала уровень излучения может достигать 30 рентген в час, а в жилых помещениях общий радиационный фон от локальных источников не может превышать 60 рентген в час. Проще говоря, и излучение от графита нельзя назвать критичным, хоть оно довольно опасно для человека. При нагревании данного материала начинает выделяться радон. Следовательно, уровень радиации сильно повышается. Если вы решили использовать в качестве материала облицовки камина графит, то это необходимо учесть.
Наконец, наиболее безопасным материалом сегодня признан мрамор. Кроме того, можно обратиться к искусственному камню. Если вы хотите использовать графит, то лучше применять его для наружной облицовки здания.
Даже обычный кирпич выделяет радон. Все бы ничего, но этот же газ выделяет земная кора, а через трещины в домах он просачивается в помещение. Получается, что уровень концентрации вредного газа значительно повышается.

Радиация может попадать в наш организм как угодно, часто виной этому становятся предметы, не вызывающие у нас никаких подозрений.

Единственный способ обезопасить себя от радиации— обратиться к специалистам ФБУЗ «Центр гигиены и эпидемиологии в Красноярском крае».

Специалисты радиационно-гигиенической лаборатории много лет работают на благо и здоровее населения всего края.

Виды исследований по показателям радиационной безопасности, выполняемые лабораторией:

дозиметрические измерения (альфа-, бета-, гамма-излучение, рентгеновское, нейтронное) – территорий открытой местности, земельные участки, помещения, металлолом, рабочие места, в том числе индивидуальный эквивалент дозы персонала группа А термолюминесцентным методом, радиационный выход рентгеновских излучателей медицинских рентгенодиагностических аппаратов;

гамма-спектрометрические исследования – определение удельной активности техногенных и природных радионуклидов в пищевых продуктах, строительных материалах, почвах, отходах, изделиях из древесины, донных отложениях ;

Более подробно можно узнать на нашем официальном сайте, пройдя по ссылке: http://fbuz24.ru/Sections/laboratory-Radiation-hygienic-studies

Мы сами ответственны за свою жизнь и здоровье. Защитите себя от радиации!

ФБУЗ «Центр гигиены и эпидемиологии в Красноярском крае» в городе Красноярске: ул. Сопочная, 38

тел. 8 (391) 202-58-33 (многоканальный)

Источник

Искусственная радиоактивность

В формировании фонового облучения существенную роль отыгрывают искусственные источники радиации. Явление искусственной радиоактивности открыто в 1934 г. супругами Жолио-Кюри, которые показали, что при бомбардировке альфа-частицами ядер легких элементов образуются другие элементы, являющиеся радиоактивными

Ядра стабильных элементов можно бомбардировать также нейтронами. В настоящее время известно свыше 900 радионуклиидов, получаемых искусственным путем. Особенно много искусственных радионуклиидов получают в ядерных реакторах, в т.ч. и реакторах АЭС. Большинство из них являются альфа-излучателями и имеют большие периоды полураспада. Не существует элементов, у которых не было бы радиоактивного изотопа.

Искусственные радионуклеиды появились в связи с деятельностью человека. Они подразделяются на три группы:

Большинство образующихся радионуклиидов являются бета- и гамма-излучателями (131J, 137Cs, 140Ba), остальные испускают или только бета-частицы (90 Sr, 135Cs) или альфа-частицы (144Nd, 147Sm).

2. Радиоактивные трансурановые элементы, возникающие в ядерно-энергетических установках и при ядерных взрывах в результате последовательных ядерных реакций с ядрами атомов делящегося вещества и последующего радиоактивного распада образующихся сверхтяжелых ядер. К этим радионуклидам относятся 237Np, 239Pu, 241Am, 242Cm и др. В основном они альфа-активны, характеризуются очень большим периодом полураспада, отсутствием стабильных изотопов.

3. Продукты наведенной радиоактивности, образующиеся в результате ядерных реакций элементарных частиц. Нейтроны, образующиеся при цепной реакции деления урана или плутония воздействуют на ядра стабильных элементов окружающей среды, превращая их в радиоактивные (реакция активации). К этим радионуклидам относятся: 45Ca, 24Na, 27Mg, 29Al, 31Si, 65Zn, 54Fe и др. Большая часть их распадается с испусканием бета- частиц и гамма- излучения.

С чем связана искусственная радиоактивность

Основными компонентами, составляющими искусственный радиационный фон (ИРФ) являются:

Воздействие на человека радиоактивных выпадений включает бета- и гамма-облучение за счет радионуклидов, присутствующих в приземном воздухе и выпавших на поверхность земли; за счет загрязнения радионуклидами кожных покровов и одежды; за счет внутреннего облучения от попавших в организм радионуклидов с вдыхаемым воздухом, пищей, водой.

2. Загрязнения локального, регионарного и глобального характера, обусловленные неаварийными выбросами АЭС и радиоактивными отходами и особенно при авариях на АЭС. При работе ядерных реакторов как и при ядерных взрывах образуется большое количество радионуклидов (продукты деления 235U, 234Pu). Основная масса продуктов деления задерживается и остается непосредственно в топливной композиции. Радиоактивные отходы могут быть в виде газов, аэрозолей, жидкостей и в твердом виде. Для задержки газоаэрозольного выброса АЭС устанавливаются фильтры, используются камеры выдержки, радиохроматографические системы (адсорбция газов на активном угле). Газоаэрозольный выброс – поступление радиоактивных веществ в вытяжную трубу высотой 100-150 м. Рассеиваясь в атмосфере, они образуют облако выброса. При движении облака в атмосфере происходит облучение людей бета- и гамма-излучением. Аэрозольные частицы, выпадая из облака, оседают на местности и мигрируют в элементах экологических систем. Часть радионуклидов, поступивших с пищей обусловливают внутреннее облучение. Если в оболочке ТВЭЛов образуются дефекты, то продукты деления могут поступать в теплоноситель. Жидкие отходы могут попасть в реки и озера.

При работе предприятий урановой промышленности возможно загрязнение окружающей среды радионуклидами на каждом из этапов производства (добыча, переработка, обогащение урана, приготовление ядерного топлива). Так, на рудниках окружающая среда загрязняется радионуклидами семейства урана-235, в основном радоном и продуктами его распада, находящимися в вентиляционном воздухе. Отвалы бедных руд вблизи обогатительных фабрик также являются источником эмиссии в атмосферу радона и продуктов его распада. При регенерации ядерного топлива на радиохимических заводах в выбросах могут быть 3Н, 14С, 137Сs и др.

3. Использование открытых источников ионизирующих излучений в промышленном производстве, сельском хозяйстве, в научных целях, медицине и т.д. Радиоактивные изотопы широко применяются в промышленности. Например, контроль износа поршневых колец в двигателях внутреннего сгорания осуществляют, облучая кольцо нейтронами, в результате чего оно становится радиоактивным. При работе двигателя частицы материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла за определенное время работы двигателя, находят износ кольца. С помощью радиоактивной дефектоскопии устанавливают наличие, место нахождения, форму и размеры внутренних дефектов в материалах и изделиях и т.д.

Широкое применение нашли радионуклиды в медицине. С их помощью диагностируют состояние отдельных органов – печени, легких, щитовидной железы и т.д. (32Р, 57Се, 131J, 133Хе и др.). Их используют для диагностики и лечения опухолей. С этой целью в организм вводят 131J, так как обмен веществ в опухоли происходит быстрей, чем в здоровых тканях, радиоизотоп йода быстрее накапливается в опухоли. Исследуя излучения над разными участками тела, находят месторасположения опухоли.

Особую роль играет радиационная стерилизация инструментов, одноразовых шприцев, ваты, бинтов и т.д. Нашли применение радионуклиды и в сельском хозяйстве. Облучение семян повышает их всхожесть и урожайность. Применяют излучения и для дезинсекции зерна, консервации сельхозпродуктов. Радиоактивные вещества (их излучения) применяются также в археологии, геологии, геохимии и в др. отраслях.

Источник

Радиоактивность вокруг нас: естественная и искусственная радиоактивность

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

Естественная радиация была всегда: до появления человека, и даже нашей планеты. Радиоактивно всё, что нас окружает: почва, вода, растения и животные. В зависимости от региона планеты уровень естественной радиоактивности может колебаться от 5 до 20 микрорентген в час. По сложившемуся мнению, такой уровень радиации не опасен для человека и животных, хотя эта точка зрения неоднозначна, так как многие ученые утверждают, что радиация даже в малых дозах приводит к раку и мутациям. Правда, в связи с тем, что повлиять на естественный уровень радиации мы практически не можем, нужно стараться максимально оградить себя от факторов, приводящих к значительному превышению допустимых значений.

С чем связана искусственная радиоактивность

Существует три основных источника естественной радиации:

1. Космическое излучение и солнечная радиация — это источники колоссальной мощности, которые в мгновение ока могут уничтожить и Землю, и всё живое на ней. К счастью, от этого вида радиации у нас есть надёжный защитник — атмосфера. Впрочем, интенсивная человеческая деятельность приводит к появлению озоновых дыр и истончению естественной оболочки, поэтому в любом случае следует избегать воздействия прямых солнечных лучей. Интенсивность влияния космического излучения зависит от высоты над уровнем моря и широты. Чем выше Вы над Землей, тем интенсивнее космическое излучение, с каждой 1000 метров сила воздействия удваивается, а на экваторе уровень излучения гораздо сильнее, чем на полюсах.

Вспышки на солнце — один из источников «естественного» радиационного фона.

Ученые отмечают, что именно с проявлением космической радиации связаны частые случаи бесплодия у стюардесс, которые основное рабочее время проводят на высоте более десяти тысяч метров. Впрочем, обычным гражданам, не увлекающимися частыми перелетами, волноваться о космическом излучении не стоит.

Уровень радиации в салоне самолета на высоте 10 000 метров превышает естественный в 10 раз.

2. Излучение земной коры. Помимо космического излучения радиоактивна и сама наша планета. В её поверхности содержится много минералов, хранящих следы радиоактивного прошлого Земли: гранит, глинозём и т.п. Сами по себе они представляют опасность лишь вблизи месторождений, однако человеческая деятельность ведёт к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов, в атмосферу после сжигания угля, на участок в виде фосфорных удобрений, а затем и к нам на стол в виде продуктов питания.

Известно, что в кирпичном или панельном доме уровень радиации может быть в несколько раз выше, чем естественный фон данной местности. Таким образом, хоть здание и может в значительной мере уберечь нас от космического излучения, но естественный фон легко превышается от использования опасных материалов. Уберечься от таких «сюрпризов» можно, только используя дозиметры.

Это единственный способ померить уровень радиации в бытовых условиях и не приобретать опасные с радиационной точки зрения материалы.

3. Радон — это радиоактивный инертный газ без цвета, вкуса и запаха. Он в 7,5 раз тяжелее воздуха, и, как правило, именно он становится причиной радиоактивности строительных материалов. Радон имеет свойство скапливаться под землей в больших количествах, на поверхность же он выходит при добыче полезных ископаемых или через трещины в земной коре.

Радон активно поступает в наши дома с бытовым газом, водопроводной водой (особенно, если её добывают из очень глубоких скважин), или же просто просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона, в отличие от других источников радиации, очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа уменьшится в несколько раз.

Мало кто слышал о том, что любой строительный материал может стать источником радиоактивного излучения.

Чем это опасно для человека и животных? На самом деле, радиация не опасна, если она ограничена небольшой дозой.

К сожалению, современные дорогостоящие материалы нередко имеют высокую степень радиации. Встречаются случаи, когда одна деревянная конструкция несет в себе до 60% допустимой дозы облучения.

В состав многих строительных материалов могут входить радиоактивные уран 238, калий 40 и торий 232, а также прочие радионуклеиды. В любом случае, конечным продуктом распада подобных элементов будет радон 222. Минеральные глины и калиевые, а также полевые шпаты обычно имеют повышенное содержание радионуклеидов.

Наиболее сильное радиоактивное излучение способен давать графит. У данного материала уровень излучения может достигать 30 рентген в час, а в жилых помещениях общий радиационный фон от локальных источников не может превышать 60 рентген в час. Проще говоря, и излучение от графита нельзя назвать критичным, хоть оно довольно опасно для человека. При нагревании данного материала начинает выделяться радон. Следовательно, уровень радиации сильно повышается. Если вы решили использовать в качестве материала облицовки камина графит, то это необходимо учесть.
Наконец, наиболее безопасным материалом сегодня признан мрамор. Кроме того, можно обратиться к искусственному камню. Если вы хотите использовать графит, то лучше применять его для наружной облицовки здания.
Даже обычный кирпич выделяет радон. Все бы ничего, но этот же газ выделяет земная кора, а через трещины в домах он просачивается в помещение. Получается, что уровень концентрации вредного газа значительно повышается.

С чем связана искусственная радиоактивность

Радиация может попадать в наш организм как угодно, часто виной этому становятся предметы, не вызывающие у нас никаких подозрений.

Специалисты радиационно-гигиенической лаборатории много лет работают на благо и здоровее населения всего края.

Виды исследований по показателям радиационной безопасности, выполняемые лабораторией:

– дозиметрические измерения (альфа-, бета-, гамма-излучение, рентгеновское, нейтронное) – территорий открытой местности, земельные участки, помещения, металлолом, рабочие места, в том числе индивидуальный эквивалент дозы персонала группа А термолюминесцентным методом, радиационный выход рентгеновских излучателей медицинских рентгенодиагностических аппаратов;

— гамма-спектрометрические исследования – определение удельной активности техногенных и природных радионуклидов в пищевых продуктах, строительных материалах, почвах, отходах, изделиях из древесины, донных отложениях;

— бета-спектрометрические исследования с использованием методов термического концентрирования – определение удельной активности техногенных радионуклидов в пищевых продуктах, почвах, отходах, изделиях из древесины, донных отложениях.

Мы сами ответственны за свою жизнь и здоровье. Защитите себя от радиации!

Источник

Искусственная радиоактивность. Ядерные реакции. Цепная реакция деления

Урок 53. Физика 11 класс ФГОС

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

Конспект урока «Искусственная радиоактивность. Ядерные реакции. Цепная реакция деления»

Спустя 38 лет после открытия Беккереля французские учёные Фредерик и Ирен Жолио-Кюри провели один очень интересный опыт. Они поместили в близи источника быстрых альфа-частиц алюминиевую фольгу и подвергли её облучению в течение нескольких минут. Затем они удалили источник и поднесли к фольге счётчик Гейгера. Какого же было удивление учёных, когда они обнаружили, что алюминиевая фольга стала радиоактивной: она испускали позитроны в течение некоторого времени.

С чем связана искусственная радиоактивность

Дальнейшие исследования показали, что при облучении, ядра алюминия захватывают альфа-частицы и превращаются в ядра изотопа фосфора-тридцать с испусканием нейтрона:

С чем связана искусственная радиоактивность

Полученный искусственно изотоп фосфора радиоактивен. Поэтому он в течение очень короткого промежутка времени самопроизвольно испускает позитрон и превращается в стабильный изотоп кремния-тридцать:

С чем связана искусственная радиоактивность

Так было открыто явление искусственной радиоактивности, за которое супруги Жолио-Кюри в 1935 году были удостоены Нобелевской премии по химии.

Искусственная радиоактивность — это распад изотопов, полученных искусственным путём (то есть в результате ядерных реакций).

Ядерными реакциями мы с вами будем называть превращение атомных ядер при их взаимодействии с элементарными частицами или друг с другом.

Ядерные реакции происходят лишь тогда, когда частицы приближаются друг к другу настолько, что попадают в зону действия ядерных сил.

Сразу обратим ваше внимание на то, что в любой ядерной реакции выполняются законы сохранения энергии и импульса. При этом, что важно, сумма зарядовых и массовых чисел ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядовых и массовых чисел ядер и частиц, получающихся в результате реакции.

Действие законов сохранения ограничивает возможные варианты ядерных реакций и позволяет предсказать возможные пути (механизмы) ядерных превращений.

Чаще всего символически ядерные реакции записываются, как:

где А — это исходное ядро, а — бомбардирующая частица. Соответственно, В — это конечное ядро, а b — испускаемая частица.

Для осуществления ядерной реакции под действием положительно заряженной частицы необходимо, чтобы частица обладала кинетической энергией, достаточной для преодоления сил кулоновского отталкивания. Например, в исторически первой ядерной реакцией, в результате которой в 1919 году Эрнестом Резерфордом был открыт протон, лишь одна из примерно 50 000 альфа-частиц захватывалась ядром азота с последующим испусканием протона:

С чем связана искусственная радиоактивность

Поэтому для осуществления таких ядерных реакций необходимо заряженным частицам сообщать достаточно большую кинетическую энергию, например, в ускорителях. В них заряженные частицы разгоняются электрическим полем, двигаясь по замкнутым орбитам или спирали, где они удерживаются с помощью магнитного поля. В современных ускорителях заряженные частицы или ядра атомов разгоняются от десятков мегаэлектронвольт до сотен гигаэлектронвольт.

С чем связана искусственная радиоактивность

Открытие нейтрона дало новый импульс в исследовании ядерных реакций. Поскольку у нейтронов нет электрического заряда, то они могут беспрепятственно проникать в атомные ядра и вызывать их изменение. Например, если нейтрон влетит в ядро алюминия, то образуется изотоп натрия и альфа-частица:

С чем связана искусственная радиоактивность

Великий итальянский физик Энрико Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения вызываются не только быстрыми нейтронами (с энергией в несколько мегаэлектронвольт), но и медленными (десятые доли электронвольта). Причём медленные нейтроны во многих случаях более эффективны, чем быстрые, так как они более вероятно вступают в реакции с данной мишенью.

Как вы могли заметить, в большинстве ядерных реакций, которые называют прямыми ядерными взаимодействиями, участвуют два ядра и две частицы. Первая пара «ядро — частица» называется исходной, а вторая — конечной:

В таких реакциях энергия, вносимая в ядро, передаётся преимущественно одному или небольшой группе нуклонов. Такой механизм реакции является основным при больших энергиях бомбардирующих частиц.

При малых энергиях бомбардирующих частиц наряду с прямыми ядерными реакциями в соответствии с представлениями, развитыми Нильсом Бором, осуществляются также реакции, происходящие в два этапа, с образованием составного ядра:

На первом этапе ядро поглощает (то есть захватывает) частицу и образуется составное ядро в возбуждённом состоянии. Энергия поглощённой частицы распределяется между всеми нуклонами составного ядра, причём энергия, приходящаяся на каждый нуклон, меньше удельной энергии связи. На втором этапе вследствие обмена энергией между нуклонами на одном или нескольких из них может сконцентрироваться энергия, достаточная для преодоления ядерных сил и вылета из составного ядра. В результате составное ядро превращается в конечное с испусканием частицы или гамма-кванта и высвобождением избытка энергии.

Особый тип ядерных реакций представляют реакции деления элементов, расположенных в конце Периодической системы химических элементов. В результате таких реакций выделяется огромное количество энергии. Почему это происходит? Обратимся к графику удельной энергии связи нуклонов.

С чем связана искусственная радиоактивность

Итак, для тяжёлых ядер, например таких, как уран-235, удельная энергия связи, приходящаяся на нуклон, составляет примерно 7,6 МэВ. Ядра химических элементов из середины периодической системы элементов Менделеева обладают максимальной удельной энергией связи — до 8,8 МэВ на нуклон. Таким образом, при расщеплении тяжёлого ядра на два три более лёгких осколка энергия связи, приходящаяся на каждый нуклон, увеличится на величину порядка одного мегаэлектронвольта. А исходя из закона сохранения энергии, такое же количество энергии выделится при делении ядра. Следовательно, в ходе ядерной реакции, приводящей к появлению ядер с большей удельной энергией связи, должна выделяться энергия.

Процессы, происходящие при ядерных реакциях, очень сложны, но их энергетический выход вычислить довольно просто благодаря великой формуле Эйнштейна. Для этого необходимо знать только массы всех компонентов ядерной реакции:

С чем связана искусственная радиоактивность

Интересно, что распад тяжёлых ядер на более лёгкие элементы долгое время считался невозможным (вплоть до 1938 года). В этом году немецкие учёные Отто Ган и Фриц Штрассман при поиске трансурановых элементов (элементов, расположенных за ураном в таблице Менделеева) облучали уран нейтронами и в продуктах реакции нашли следы бария. 17 декабря 1938 года они провели решающий опыт, на основании которого Ган заключил, что ядро урана «лопается», распадаясь на более лёгкие элементы.

С чем связана искусственная радиоактивность

В 1939 году австрийский физик Лиза Мейтнер и её племянник Отто Роберт Фриш дали верную интерпретацию это явления. По мнению учёных, при попадании нейтрона в тяжёлое ядро урана происходит деление последнего на две примерно равные части. Поскольку в дочерних относительно лёгких ядрах оказывается избыток нейтронов, то вероятен ещё и вылет нескольких нейтронов.

Фриш незамедлительно сообщил об открытии Нильсу Бору, который на знаменитой конференции по теоретической физике в Вашингтоне 26 января 1939 года сообщил об открытии деления урана. Интересно, что многие физики, принимавшие участие в этой конференции, не дожидаясь конца доклада, один за другим стали покидать заседание, чтобы проверить сообщение в своих лабораториях. Так было открыто расщепление ядра.

В том же году Фредерик Жолио-Кюри, Ханс Халбан и Лев Николаевич Коварский показали, что действительно при делении одного ядра урана на два осколка освобождается два или три нейтрона и выделяется около 200 МэВ энергии.

С чем связана искусственная радиоактивность

А теперь представим, что у нас есть некоторое количество ядер урана-двести тридцать пять. Образовавшиеся в результате первого деления нейтроны смогут разделить новые ядра урана образовав новые нейтроны. Так, при определённых условиях процесс, начавшись однажды с одного нейтрона, может принять характер цепной реакции.

Ядерная реакция деления, в которой частицы, вызывающие реакцию, образуются как продукты этой же реакции, называется цепной.

С чем связана искусственная радиоактивность

С чем связана искусственная радиоактивность

Скорость цепной реакции деления ядер характеризуется коэффициентом размножения нейтронов.

Коэффициент размножения нейтронов равен отношению числа нейтронов в теле в данном поколении цепной реакции к их числу в следующем поколении:

С чем связана искусственная радиоактивность

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *