primary scrambling code ортогональный код
Термины используемые в сотовой связи
В соответствии с решениями ГКРЧ о выделении полос радиочастот для радиоэлектронных сетей связи, на территории Москвы и Московской области сейчас разрешены к использованию следующие полосы частот и стандарты.
Диапазон частот нисходящего направления DwLink МГц
Диапазон частот восходящего направления UpLink МГц
Номер рабочей полосы (Band)
Для стандарта Wi-Fi на территории РФ разрешена работа в следующих диапазонах частот:
• Wi-Fi 2.4 ГГц (802.11b/g/n/ax) диапазон 2400—2483,5 МГц
• Wi-Fi 5 ГГц (802.11a/h/j/n/ac/ax) диапазоны 5150 — 5350 МГц и 5650 — 6425 МГц
Абсолютный номер радиочастотного канала (Absolute Radio Frequency Channel Number) связи стандарта GSM, на котором транслируется канал BCCH базовой станции.
ARFCN определяет пару частот, используемых для приема и передачи информации
Уровень сигнала, принимаемого от данного ARFCN
Mobile Country Code – мобильный код страны. MCC определяет страну, на территории которой действует сеть оператора сотовой связи
Mobile Network Code – код мобильной сети. MNC в комбинации с MCC используется для однозначной идентификации сети сотовой связи
Local Area Code – код локальной зоны. Локальная зона представляет собой совокупность базовых станций, обслуживаемых одним контроллером базовых станций (BSC)
CellID – идентификатор соты. Определяет базовую станцию и ее сектор, которые обслуживают данный ARFCN
Метка времени, определяющая момент обнаружения данного ARFCN
Cell Reselection Hysteresis – гистерезис уровня приема сигнала, требующийся для перевыбора соты. CRH служит для предотвращения нежелательного переключения абонентов, находящихся у границы локальной зоны (LA – Location Area), на соты соседней LA
Cell Reselection Offset – смещение критерия перевыбора соты. CRO используется для регулировки предпочтения переключения МПО абонента на соту, использующую данный ARFCN
RXLEV-ACCESS-MIN – параметр, характеризующий минимальный уровень принимаемого на МПО сигнала, при котором возможен доступ МПО к данной соте
Индикатор поддержки технологии GPRS базовой станцией, обслуживающей данный ARFCN.
В данном столбце могут быть отображены следующие значения:
– «1», если базовая станция поддерживает технологию GPRS;
– «0», если базовая станция не поддерживает технологию GPRS
Определяет значение таймера, задающего периодичность осуществления МПО абонента регулярной процедуры обновления местоположения (Location Update)
Индикатор наличия сообщения «System Information 2ter» в составе системной информации, транслируемой по каналу BCCH той соты, которая обслуживает данный ARFCN.
В данном столбце могут быть отображены следующие значения:
– «1», если сообщение «System Information 2ter» присутствует;
– «0», если сообщение «System Information 2ter» отсутствует
Список ARFCN, выделенных соте, которая обслуживает данный ARFCN
Список ARFCN, на которых транслируются каналы BCCH соседних сот. Список формируется по следующему принципу:
– для выбранных ARFCN стандарта GSM 900 отображается список ARFCN соседних сот стандарта GSM 900;
– для выбранных ARFCN стандарта GSM 1800 отображается список ARFCN соседних сот стандарта GSM 1800
Список ARFCN, на которых транслируются каналы BCCH соседних сот. Список формируется по следующему принципу:
– для выбранных ARFCN стандарта GSM 900 отображается список ARFCN соседних сот стандарта GSM 1800;
– для выбранных ARFCN стандарта GSM 1800 отображается список ARFCN соседних сот стандарта GSM 900
Абсолютный номер радиочастотного канала связи в системе UMTS (UTRA Absolute Radio-Frequency Channel Number), на котором транслируется канал BCCH базовой станции
Chip energy – уровень энергии на chip
Mobile Country Code – мобильный код страны. MCC определяет страну, на территории которой действует сеть сотовой связи
Mobile Network Code – код мобильной сети. MNC в комбинации с MCC используется для однозначной идентификации сети сотовой связи
Primary Scrambling Code – Ортогональный код
Метка времени, определяющая момент обнаружения данного UARFCN
Отношение энергии сигнала к интерференции
Signal to Interference Rate – отношение уровня сигнала к интерференции
Описание заносимых в столбец данных
Абсолютный номер радиочастотного канала связи в системе LTE (E-UTRA Absolute Radio-Frequency Channel Number), на котором транслируется канал BCCH базовой станции
Mobile Country Code – мобильный код страны. MCC определяет страну, на территории которой действует сеть сотовой связи
Mobile Network Code – код мобильной сети. MNC в комбинации с MCC используется для однозначной идентификации сети сотовой связи
Tracking Area Code – код зоны отслеживания. Зона отслеживания представляет собой совокупность зон обслуживания нескольких базовых станций стандарта LTE
Physical Cell Identity – физический идентификатор соты. Данный идентификатор используется для дифференциации сигналов разных сот
Cell Identity – идентификатор соты. Данный идентификатор определяет базовую станцию и ее сектор, которые обслуживают данный EARFCN
Ширина полосы частот данного EARFCN
Метка времени, определяющая момент обнаружения данного EARFCN
Уровень сигнала, принимаемого от данного EARFCN
Описание заносимых в столбец данных
Номер частотного канала
Название точки доступа на данном частотном канале
MAC адрес точки доступа на данном частотном канале
scrambling
1 scrambling
2 scrambling
3 scrambling
Тематики
перестановка элементов
—
[Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]
Тематики
Тематики
3.1.37 скремблирование (scrambling): Преобразование структуры цифрового сигнала электросвязи, без изменения скорости передачи символов этого сигнала, с целью приближения его свойств к свойствам случайного сигнала.
4 scrambling
5 scrambling
6 scrambling
7 scrambling
8 scrambling
9 scrambling
10 scrambling
11 scrambling
12 scrambling
13 scrambling
14 scrambling
15 scrambling
16 scrambling
17 scrambling
18 scrambling
19 scrambling
20 scrambling
См. также в других словарях:
Scrambling — Scram bling, a. Confused and irregular; awkward; scambling.
Scrambling — This article is about climbing steep slopes. For other uses, see Scramble (disambiguation). Scrambling on Crib Goch, Snowdonia, Wales Scrambling (also known as alpine scrambling) is a method of ascending rocky faces and ridges. It is an ambiguous … Wikipedia
Scrambling — Der Ausdruck Scrambling (aus engl. „vertauschen“) bezeichnet in der elektronischen Datenverarbeitung: Im Sinne von „ersetzen“, die Eliminierung von Bitfolgen bei Datenspeicherung oder übertragung durch solche, die besser an die Eigenschaften des… … Deutsch Wikipedia
scrambling — noun An act of scrambling. The scrambling of the message made it harder to decode … Wiktionary
scrambling — noun the leisure activity of scrambling over rough or steep ground. ↘Brit. the sport of racing motorcycles over rough and hilly ground … English new terms dictionary
scrambling — šifravimas statusas T sritis automatika atitikmenys: angl. ciphering; enciphering; encryption; scrambling vok. Verschlüsselung, f rus. шифрование, n pranc. chiffrage, m; codage, m … Automatikos terminų žodynas
Scrambling — Verwürfelung; Verschlüsselung * * * Scram|b|ling [ skræmbliŋ; engl. scramble = umherwerfen, verrühren], das; s: die Herst. unspezif. markierter, z. B. deuterierter Verbindungen durch unselektive Platzwechselreaktionen (↑ Austauschreaktionen, 2) … Universal-Lexikon
scrambling — scram|bling [ˈskræmblıŋ] n [U] 1.) the activity of climbing over rocks using your hands but no ropes 2.) BrE the activity of racing on ↑motorcycles over rough ground … Dictionary of contemporary English
scrambling — scram·ble || scræmbl n. climb over rough terrain, clamber; struggle for possession; disorderly or chaotic proceeding v. mix while cooking (usually about eggs); jumble, mix together confusedly; clamber, climb on all fours; struggle; bustle,… … English contemporary dictionary
SCRAMBLING — … Useful english dictionary
4.1 Wcdma Primary Scrambling Code Planning
ue access
downlink physical
uplink scrambling
wcdma scrambling
neighboring
neighboring
primary cell
neighboring
Text of 4.1 Wcdma Primary Scrambling Code Planning
WCDMA Primary Scrambling Codes PlanningISSUE 1.0
Huawei Confidential. All Rights Reserved
Upon completion this course, you will be able to:
Understand the principles for cell primary scrambling codes planning in WCDMA network
Understand how to plan the cell primaryscrambling codes (PSC)
Chapter 1 WCDMA PSCs Chapter 2 WCDMA PSC planning principle Chapter 3 WCDMA PSC planning method
Chapter 4 WCDMA PSC planning case
WCDMA Scrambling Codes
WCDMA Scrambling Codes
Downlink scrambling codes
Downlink Scrambling CodesPrimary scrambling code 0 Secondary scrambling code 1
Set 0 Scrambling codes for downlink physical channels Set 1
Secondary scrambling code 15
Primary scrambling code 51116
8192 scrambling codes
Secondary scrambling code 5111615
A primary scrambling code and 15 secondary scrambling codes are included in a set.Internal Use
Downlink Primary Scrambling Code GroupsPrimary scrambling code 0Primary scrambling code 1
Group 0Primary scrambling codes for downlink physical channels
Primary scrambling code 7
Group 1 Primary scrambling code 8*63
Primary scrambling code 63*87
512 primary scrambling codes
64 primary scrambling code groups
Each group consists of 8 primary scrambling codesInternal Use
Downlink Primary Scrambling Codes / PSC_1 PSC_2 PSC_3 PSC_4 PSC_5 PSC_6 PSC_7 PSC_8 0 0 16 32 48 64 80 96 112 1 128 144 160 176 192 208 224 240 2 256 272 288 304 320 336 352 368 3 384 400 416 432 448 464 480 496 4 512 528 544 560 576 592 608 624 5 640 656 672 688 704 720 736 752 6 768 784 800 816 832 848 864 880 7 896 912 928 944 960 976 992 1008 8 1024 1040 1056 1072 1088 1104 1120 1136 9 1152 1168 1184 1200 1216 1232 1248 1264 10 1280 1296 1312 1328 1344 1360 1376 1392 11 1408 1424 1440 1456 1472 1488 1504 1520 12 1536 1552 1568 1584 1600 1616 1632 1648 13 1664 1680 1696 1712 1728 1744 1760 1776 14 1792 1808 1824 1840 1856 1872 1888 1904 15 1920 1936 1952 1968 1984 2000 2016 2032
162048 2064 2080 2096 2112 2128 2144 2160
172176 2192 2208 2224 2240 2256 2272 2288
182304 2320 2336 2352 2368 2384 2400 2416
192432 2448 2464 2480 2496 2512 2528 2544
202560 2576 2592 2608 2624 2640 2656 2672
212688 2704 2720 2736 2752 2768 2784 2800
222816 2832 2848 2864 2880 2896 2912 2928
232944 2960 2976 2992 3008 3024 3040 3056
243072 3088 3104 3120 3136 3152 3168 3184
253200 3216 3232 3248 3264 3280 3296 3312
263328 3344 3360 3376 3392 3408 3424 3440
273456 3472 3488 3504 3520 3536 3552 3568
283584 3600 3616 3632 3648 3664 3680 3696
293712 3728 3744 3760 3776 3792 3808 3824
303840 3856 3872 3888 3904 3920 3936 3952
313968 3984 4000 4016 4032 4048 4064 4080
Downlink Primary Scrambling Codes324096 4112 4128
41444160 4176 4192 4208
42724288 4304 4320 4336
44004416 4432 4448 4464
45284544 4560 4576 4592
46564672 4688 4704 4720
47844800 4816 4832 4848
49124928 4944 4960 4976
50405056 5072 5088 5104
51685184 5200 5216 5232
52965312 5328 5344 5360
54245440 5456 5472 5488
55525568 5584 5600 5616
56805696 5712 5728 5744
58085824 5840 5856 5872
59365952 5968 5984 6000
60646080 6096 6112 6128
486144 6160 6176 6192 6208 6224 6240
496272 6288 6304 6320 6336 6352 6368
506400 6416 6432 6448 6464 6480 6496
516528 6544 6560 6576 6592 6608 6624
526656 6672 6688 6704 6720 6736 6752
536784 6800 6816 6832 6848 6864 6880
546912 6928 6944 6960 6976 6992 7008
557040 7056 7072 7088 7104 7120 7136
567168 7184 7200 7216 7232 7248 7264
577296 7312 7328 7344 7360 7376 7392
587424 7440 7456 7472 7488 7504 7520
597552 7568 7584 7600 7616 7632 7648
607680 7696 7712 7728 7744 7760 7776
617808 7824 7840 7856 7872 7888 7904
627936 7952 7968 7984 8000 8016 8032
638064 8080 8096 8112 8128 8144 8160
Chapter 1 WCDMA PSCs Chapter 2 WCDMA PSC planning principle Chapter 3 WCDMA PSC planning method
Chapter 4 WCDMA PSC planning case
WCDMA PSCs planning principlePrinciple The intra-frequency other cells can not use the same PSC as the primary cell because of the interference!
WCDMA PSCs planning principle
WCDMA PSCs planning principle
These cells without interference to the primary cell are regarded as non neighboring cells, which can use the same PSCs as this primary cell
Chapter 1 WCDMA PSCs Chapter 2 WCDMA PSC planning principle Chapter 3 WCDMA PSC planning method Chapter 4 WCDMA PSC planning case
WCDMA PSC planning method
The cell PSCs can be planned by either of the following two methods:
Primary cell uses different PSCs from the neighboring cells, with the PSCs of the primary cell and those of the neighboring cells belonging to the same scrambling code group.
Primary cell uses different PSCs from the neighboring cells, with the PSCs of the primary cell and those of the neighboring cells belonging to different scrambling code groups.
NOW THE LATTER IS RECOMMANDED
Chapter 1 WCDMA PSCs Chapter 2 WCDMA PSC planning principle Chapter 3 WCDMA PSC planning method Chapter 4 WCDMA PSC planning case
WCDMA PSC planning case
In general, one site can support 3 intra-cells in actual network. So one PSCs group can be divided into (8 PSCs every group) 2 subgroups (4 PSCs every subgroup) 512 PSCs can be divide into 128 subgroups. The first PSC that stands for the subgroup should take part in the site PSC planning, the other PSCs of the subgroup are allocated to the cells of this site. We must keep reserve some PSCs for future network planning.
WCDMA PSC planning case
WCDMA PSC planning case
WCDMA PSC planning case
WCDMA PSC planning caseFor Example:
UMTS Scrambling Code Planning
code group strategy
code groups strategy
code planning strategy
code use
reserved code groups
document scope
frequency bands version
document properties
3G PSC code planning.Very good documents
Text of UMTS Scrambling Code Planning
Insert Title in Document Properties and Not Here
Radio Design Group
Scrambling code allocation strategyHutchison 3G Engineering Documentation
Radio Design Group
Author:Mattia Quinzio (Nokia)Owner:Paul Sheehan
Title:Scrambling code allocation strategy
A strategy and methodology for DL primary scrambling code allocation in H3G network, for launch plus 6 months.
1.1 Document Version History
VersionDateAuthorReason for Change
D1.012/07/02Mattia Quinzio1st version
D1.123/07/02Mattia QuinzioCode naming added, code group strategy revised for carriers and layers
I1.024/09/02Paul SheehanRevised formatting
1.2 Distribution List
Kassir HussainRF Strategy & Optimisation
David HennessyNational Rollout
21.1Document Version History
76UE synchronization process
87Requirements for code allocation
98.1Enterprise v 3.4
98.2Enterprise v 4.0
98.3Enterprise v 4.1
119.3Group reuse distance
1210Code groups strategy
1410.2.4Reserved code groups
1410.3Restraints on code use, national borders
This document proposes a strategy to accomplish the task of scrambling code allocation for H3G UMTS network.
2.2 Intended Audience
The RF Design & Terminals and the National Network Rollout & Integration teams.
[1] 3GPP TS 25.214 v3.10.0 (2001-03); Technical Specification Group Radio Access Network; Physical Layer Procedures (FDD) Release 1999.
[2] Kourtis S, «Code Planning Strategy for UMTS-FDD networks»
[3] Memorandum of Understanding concluded between France and the United Kingdom on coordination in the 1900-1980 MHz, 2010-2025 MHz and 2110-2170 MHz frequency bands; Version Dec 2001; Doc (01) 05 E rev 1
[4] Memorandum of Understanding concluded between the administration of the United Kingdom and Ireland on coordination in the 1900-1980 MHz, 2010-2025 MHz and 2110-2170 MHz frequency bands; Version 06/1-/01
[5] Memorandum of Understanding concluded between the Isle of Man and the United Kingdom on coordination in the 1914.9-1919.9 MHz, 1920.3-1930.3 MHz and 2110.3-2120.3 MHz frequency bands; Version 27/03/01
There is the need to define a scrambling code allocation strategy before H3G network launch.
This documents first describes the basic concept of scrambling codes (chapter 5) and their impact on UE performances (chapter 6). Downlink scrambling code allocation is not crucial on the overall system performances. It has been proven though how the UE performances can be improved when scrambling codes are defined with certain constraints deriving from the neighbour lists (chapter 7). Unfortunately the Aircom planning tool currently available cannot support this process (chapter 8).
In this scenario, the proposed strategy comes as an interim solution for H3G network launch plus 6 months, described in chapter 9. In the long-term scenario more appropriate tools will be available, providing the flexibility to rewrite the strategy and methodology for scrambling code planning.
The last chapter deals with planning codes on different carriers, different layers and at national borders.
5 Scrambling codes
In the UMTS radio access network all cells can reuse the same frequency carrier for downlink transmission; the same happens for all the mobiles in the uplink. In both links the transmission is separated in reception through the use of scrambling codes.
The allocation of scrambling codes on the uplink is performed by the RNC at any new connection and, depending on the vendor, little or no planning action is required.
On the downlink, instead, scrambling codes are cell specific and must be planned on a per cell basis before network integration. There are 512 scrambling codes sets; each set includes one primary scrambling code and 15 secondary scrambling codes. The secondary scrambling codes will be used when intelligent antennas are deployed. As this is not going to happen in the first year of H3G network, a strategy for secondary scrambling codes is out of the scope of this document. The 512 primary scrambling codes are organised into 64 groups of 8 codes each. The definition of code groups is meant to increase the flexibility of the synchronisation process in terms of speed, reliability and processing requirement, as chapter 6 describes.
Each scrambling code should identify uniquely one cell in the area; this means that in any location all the cells that a UE can measure need to have different scrambling codes in order to be unambiguously detected.
The RAN scrambling code parameter is simply numbered from 0 to 511, as in Table 1.
Table 1: Scrambling codes numbering
A further code-naming scheme can be defined for the allocation strategy described in this document. The proposed scheme is a three-character string: the first two digits indicate the code group (j, from 00 to 63) and the third letter is for the code inside the group (k, from A to H).
Table 2: Scrambling code-naming for code allocation
In this document codes will be referred to following Table 2 scheme. A simple look-up table can be used at any time to convert codes from one naming scheme to another.
Table 3: Scrambling codes look-up table
6 UE synchronization process
The UE follows a three-step synchronization process every time it has to synchronize to a new cell for cell selection (see Table 4). In this process the UE is blind, i.e. it has no knowledge of the scrambling code used by the detected cell.
2Frame synch. & code group identification
3scrambling code identification and CPICH measurement
In the first step, slot synchronisation is achieved using the Primary Synchronisation Code on the P-SCH, common to all the cells in the network.
In the second step the frame synchronization is obtained and the scrambling code group is determined from the Secondary Synchronisation Code sequence; there is a one-to-one relationship between 64 different code sequences on the S-SCH and 64 scrambling code groups.
Once frame synchronization is achieved the primary scrambling code can be identified and the pilot channel measured [1]. The Ec/Io measurements on the CPICH are at the base of cell selection criteria.
6.2 Neighbours measurements
Even though the algorithm used by the UE to synchronize to a neighbour cell is vendor specific, it is reasonable to assume that the same synchronization process specified for cell selection will be used, as it has been designed to minimize time and complexity required to the UE.
While following the steps of the synchronization process for neighbour cell measurements, the UE knows in advance the scrambling code of the cell it has to synchronize to and measure. This knowledge might be used, while defining the code allocation strategy, to reduce complexity and to gain on performance [2].
Any strategy on scrambling code allocation should aim to find the best trade-off between the speed for a fast handover and the processing power requirement (and hence battery consumption) on the second and third stages of the synchronization process done for neighbour cell measurement.
In the neighbours measurement process the main roles are played by the number of neighbours (N), the number of code groups (M) and the number of code per groups (L) used in the neighbour list.
It has been studied [2] that minimizing M and maximizing L leads to faster handovers at the expenses of higher processing power requirements for the UE. As well it is currently believed that this increase in UE power consumption can be ignored if compared to the total UE power consumption (there might be scope for investigating more on this subject).
In conclusion it is recommended to minimize the number of code groups and consequently to maximize the number of codes per group in all neighbour lists in the network.
Calculating Downlink Scramble Codes
The N7600A Signal Studio software implements scrambling codes for downlink channels in compliance with 3GPP W-CDMA specifications. This is done through the use of Scramble Code, Scramble Type, and Scramble Offset fields in the downlink channel parameter selection table. These fields are linked so that an entry to any field affects the actual scramble code.
The Primary Scrambling Code for all channels is set in the downlink carrier parameter selection table.
To better understand the relationship, please refer to the following formula.
i = scramble code field input
Primary Range: 0 to 511
Secondary Range: 0 to 511
k = scramble offset field input
m = scramble type field input
Standard: adds 0
Right Alternate: adds16384
Left Alternate: adds 8192
The Scramble Code field has two sets: primary and secondary, each with a field range of 0 through 511. The primary and secondary sets are determined by the Scramble Offset field. If the Scramble Offset field is zero, then the scramble code is in the primary set. Any non-zero entry enables the secondary set. The Scramble Offset field has a range of 0 through 15.
The Scramble Type field has three modes: Standard, Right Alternate, and Left Alternate. The standard scramble type has a value of zero and does not contribute to the scramble code. Selecting the right alternate adds 16384 to the actual scramble code, whereas the left alternate adds 8192.
Scramble Codes with Standard Scramble Type
A primary scramble code is the product of the Scramble Code field entry and 16. Therefore, the primary scramble code set contains all multiples of 16 from 0 through 8176.
A secondary scramble code is the sum of the non-zero Scramble Offset field entry and the primary scramble code. The secondary scramble code set uses the numbers in between the multiples of 16.
Thus, all numbers from 0 through 8191 are available for scramble codes when using the standard scramble type.
Refer to the following for examples of scramble codes generated with the primary and secondary sets: