перевод десятичных чисел в двоичный код

Как проводится перевод числа из десятичной системы в двоичную?

Содержание:

Перевод из десятичной в двоичную систему исчисления проводится несложно. Для этого действия есть собственный специализированный алгоритм, который мы рассмотрим чуть ниже.

Перевод из десятичной в двоичную систему: целые числа

Пример, как осуществляется перевод из десятичной в двоичную систему

Перевод из десятичной в двоичную систему: дробные числа

Здесь тоже не все может быть сразу понятно, но взглянув на пример, все сразу станет ясно.

перевод десятичных чисел в двоичный код

Пример, как осуществляется перевод дробного десятичного числа в двоичную систему

Эту конвертацию можно осуществлять до того момента, пока мы не добьемся нужного уровня погрешности. Но для демонстрации алгоритма конвертации этого достаточно. В результате мы получили, что десятичное число 0,234 в двоичном исчислении будет равняться 0011101111100.

А как конвертировать дробное число, если у него в целой части будет какое-то другое значение, кроме 0? Например нам нужно конвертировать число 10,25. В этом случае целая и дробная части будут переводиться раздельно:

Вот что мы получим по факту:

В конце наших вычислений мы получим, что десятичное число 10,25 в двоичной форме будет выглядеть вот так — 1010,01. Кстати, если внимательно посмотреть, то видно, что при конвертации в двоичную форму дробной части нашего примера (при умножении на 2), дробная часть стала равняться 0, поэтому вычисления закончились.

Источник

Перевод чисел в различные системы счисления с решением

Исходное число записано в -ой системе счисления.

Хочу получить запись числа в -ой системе счисления.

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число:5921
Позиция:3210

Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число:1234567
Позиция:3210-1-2-3

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.

Источник

Двоично-десятичное кодирование

Калькулятор преобразует число из десятичное в двоичное, но записанное упакованным двоично-десятичным кодом, и наоборот.

После калькулятора Перевод дробных чисел из одной системы счисления в другую я думал, что тема с системами счисления уже закрыта. Но, как оказалось, еще нет.
Как я писал по ссылке выше, основная проблема при переводе дробных чисел из одной системы счисления в другую это потеря точности, когда, например, десятичное число 0.8 нельзя перевести в двоичное без погрешности.

Поскольку десятичные числа активно используются человеком, а двоичные — компьютером, этой проблемой в применении к двоичной и десятичной системам однажды уже озаботились какие-то светлые умы и придумали двоично-десятичное кодирование (binary coded decimal, BCD). Суть идеи проста — берем и для каждой десятичной цифры заводим байт. И в этом байте тупо пишем значение десятичной цифры в двоичном коде. Тогда число, например, 0.8 будет 0.00001000. Потом, правда, подумали еще, и решили, что раз уж верхняя часть байта всегда пустует (так как максимум 9 — это 1001), то давайте для каждой десятичной цифры заводить полубайт. И назвали это упакованным двоично-десятичным кодированием (packed BCD).
В упакованном кодировании наше 0.8 будет 0.1000, а какое-нибудь 6.75 будет 0110.01110101.

Прекрасная идея, конечно. Точность не теряется, человек может двоичные числа переводить в десятичные и наоборот прямо на лету, округлять можно, откидывая лишнее. Но как-то не получила она широкого распространения, потому как жизнь машинам она, наоборот, усложняла — и памяти для хранения чисел надо больше, и операции над числами реализовать сложнее. Так и осталась забавным курьезом, и я бы ничего о ней не знал, если бы пользователи не подсказали, что есть такая.

Ну и небольшой калькулятор по этому поводу — вводим либо десятичное число, либо двоичное, подразумевая, что это упакованный двоично-десятичный код, и получаем результат. Понятно, что все преобразования можно проделать и в уме, и в этом ее преимущество; но зачем же лишний раз мозги напрягать, верно?

Источник

Перевод чисел из одной системы счисления в другую

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Перевод в десятичную систему счисления

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Перевод из двоичной системы в шестнадцатеричную

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада0000000100100011010001010110011110001001101010111100110111101111
Цифра0123456789ABCDEF

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра0123456789ABCDEF
Тетрада0000000100100011010001010110011110001001101010111100110111101111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Источник

Перевод чисел в двоичную, шестнадцатеричную, десятичную, восьмеричную системы счисления

перевод десятичных чисел в двоичный код перевод десятичных чисел в двоичный код перевод десятичных чисел в двоичный код перевод десятичных чисел в двоичный код перевод десятичных чисел в двоичный код перевод десятичных чисел в двоичный код перевод десятичных чисел в двоичный код

Способы представления чисел

Алгоритм перевода чисел из одной системы счисления в другую

Для перевода числа из двоичной системы счисления в восьмиричную (шестнадцатиричную) необходимо от запятой вправо и влево разбить двоичное число на группы по три (четыре – для шестнадцатиричной) разряда, дополняя при необходимости нулями крайние группы. Каждую группу заменяют соответствующей восьмиричной или шестнадцатиричной цифрой.

Таблица для перевода в восьмеричную систему счисления

Двоичная ССВосьмеричная СС
0000
0011
0102
0113
1004
1015
1106
1117

Остаток от деления записываем в обратном порядке. Получаем число в 8-ой системе счисления: 144
100 = 1448

Для перевода дробной части числа последовательно умножаем дробную часть на основание 8. В результате каждый раз записываем целую часть произведения.
0.12*8 = 0.96 (целая часть 0 )
0.96*8 = 7.68 (целая часть 7 )
0.68*8 = 5.44 (целая часть 5 )
0.44*8 = 3.52 (целая часть 3 )
Получаем число в 8-ой системе счисления: 0753.
0.12 = 0.7538

2 Этап. Перевод числа из десятичной системы счисления в восьмеричную систему счисления.
Обратный перевод из восьмеричной системы счислений в десятичную.

Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
144 = 8 2 *1 + 8 1 *4 + 8 0 *4 = 64 + 32 + 4 = 100

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *