найдите десятичные эквиваленты чисел представленных в дополнительном коде 00000100 11111001
ГДЗ по информатике 10 класс учебник Босова параграф 13
1. Представьте в восьмиразрядном формате прямые коды десятичных чисел:
1 байт = 8 бит (11111111).
4316= 10 10112 — можно.
1010102 = 1010102 — можно.
3. Как определяется диапазон представления в компьютере целых чисел без знака? Со знаком?
Целые числа могут представляться в компьютере со знаком или без знака.
Целые числа без знака в компьютерах обычно занимают в памяти 1, 2 или 4 байта. Размер занимаемой памяти зависит от разрядности процессора, т.е. величины машинного слова. Для современных моделей компьютеров машинное слово размером 64 бита стало обычным делом, поэтому однобайтовый формат хранения целых чисел без знака становится редкостью.
Диапазон значений, который может храниться в конкретном формате, легко определяется. Например, для однобайтового формата это значения от 00000000 до 11111111, что составляет в десятичной системе диапазон от 0 до (28-1), т.е. от 0 до 255. Аналогично определяются диапазоны значений для других форматов.
4. Почему множество целых чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
Дискретным называется счётное множество, то есть любое конечное множество по определению дискретно. А ограничено оно потому, что эта память сама по себе квантирована и не бесконечна.
5. Представьте в восьмиразрядном формате дополнительные коды двоичных чисел:
6. Найдите десятичные эквиваленты чисел, представленных в прямом коде:
1) 00000100; 2) 00001001; 3) 10000011; 4) 10000110.
*7. Найдите десятичные эквиваленты чисел, представленных в дополнительном коде:
1) 00000100; 2) 00001001; 3) 10000011; 4) 10000110.
1) в прямом коде;
2) в дополнительном коде?
1) Прямой код числа это представление беззнакового двоичного числа.
т.е. как можно представить отрицательное число в прямом коде? никак.
в двоичной системе это 0000000001100101.
теперь инвертируем это число (меняем 0 на 1, и 1 на 0):
потом прибавляем справа единицу и получаем дополнительный код:
1111111110011011 это и есть наше отрицательное число в дополнительном коде.
9. Вычислите с помощью калькулятора (приложение Windows) в режиме «Программист» следующие примеры:
Как вы можете объяснить полученные результаты?
10. Запишите десятичные числа в нормализованной форме:
1) 217,934; 2) 75321; 3) 10,0101; 4) 200450.
11. Сравните следующие числа:
12. Выполните операцию сложения:
13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?
Диапазон представления вещественных чисел определяется количеством разрядов, отведённых для хранения порядка чисел, а точность – количеством разрядов, отведённых для хранения мантиссы. Диапазон вещественных чисел ограничен, но он значительно шире, чем при представление целых чисел в форме с фиксированной запятой.
14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
Дискретное счётное множество представляет собой любое конечное множество, которое и так по определению дискретно. Ограничено оно потому, память и так сама по себе квантирована и не бесконечна. Можно представить память неограниченной. Но адресное пространство не может быть большим до бесконечности. То есть компьютер работает только с ограниченной разрядной сеткой.
*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.
• Числа представляются в двоичной системе счисления.
• Результат перевода в двоичную систему дополняется нулями слева в пределах выбранного формата.
• Для представления отрицательного числа используется дополнительный код числа.
Урок 16
§13. Представление чисел в компьютере
Содержание урока:
САМОЕ ГЛАВНОЕ Вопросы и задания | ||
13.2. Представление вещественных чисел (продолжение) | Материалы к уроку |
САМОЕ ГЛАВНОЕ
В математике множество целых чисел дискретно, бесконечно и не ограничено.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. В любом случае компьютерное представление целых чисел дискретно, конечно и ограничено.
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
12. Выполните операцию сложения:
13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?
14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.
Cкачать материалы урока
§ 13. Представление чисел в компьютере
В математике множество целых чисел дискретно, бесконечно и не ограничено.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. В любом случае компьютерное представление целых чисел дискретно, конечно и ограничено.
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
1. Представьте в восьмиразрядном формате прямые коды десятичных чисел:
3. Как определяется диапазон представления в компьютере целых чисел без знака? Со знаком?
4. Почему множество целых чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
5. Представьте в восьмиразрядном формате дополнительные коды двоичных чисел:
6. Найдите десятичные эквиваленты чисел, представленных в прямом коде:
1) 00000100; 2) 00001001; 3) 10000011; 4) 10000110.
*7. Найдите десятичные эквиваленты чисел, представленных в дополнительном коде:
1) 00000100; 2) 11111001.
1) в прямом коде;
2) в дополнительном коде?
9. Вычислите с помощью калькулятора (приложение Windows) в режиме «Программист» следующие примеры:
Как вы можете объяснить полученные результаты?
10. Запишите десятичные числа в нормализованной форме:
1) 217,934; 2) 75321; 3) 10,0101; 4) 200450.
11. Сравните следующие числа:
12. Выполните операцию сложения:
13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?
14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.
§ 13. Представление чисел в компьютере
В математике множество целых чисел дискретно, бесконечно и не ограничено.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. В любом случае компьютерное представление целых чисел дискретно, конечно и ограничено.
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
1. Представьте в восьмиразрядном формате прямые коды десятичных чисел:
3. Как определяется диапазон представления в компьютере целых чисел без знака? Со знаком?
4. Почему множество целых чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
5. Представьте в восьмиразрядном формате дополнительные коды двоичных чисел:
6. Найдите десятичные эквиваленты чисел, представленных в прямом коде:
1) 00000100; 2) 00001001; 3) 10000011; 4) 10000110.
*7. Найдите десятичные эквиваленты чисел, представленных в дополнительном коде:
1) 00000100; 2) 11111001.
1) в прямом коде;
2) в дополнительном коде?
9. Вычислите с помощью калькулятора (приложение Windows) в режиме «Программист» следующие примеры:
Как вы можете объяснить полученные результаты?
10. Запишите десятичные числа в нормализованной форме:
1) 217,934; 2) 75321; 3) 10,0101; 4) 200450.
11. Сравните следующие числа:
12. Выполните операцию сложения:
13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?
14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.
Учитель информатики
Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.
Представление чисел в компьютере
Информатика. 10 класса. Босова Л.Л. Оглавление
§13. Представление чисел в компьютере
Самым первым видом данных, с которыми начали работать компьютеры, были числа. ЭВМ первого поколения могли производить только математические расчёты (вычисления).
Из курса информатики основной школы вы помните, что компьютеры работают с целыми и вещественными числами. Их представление в памяти осуществляется разными способами.
13.1. Представление целых чисел
Во многих задачах, решаемых на компьютере, обрабатываются целочисленные данные. Прежде всего, это задачи экономического характера, при решении которых данными служат количества акций, сотрудников, деталей, транспортных средств и др. Целые числа используются для обозначения даты и времени, для нумерации различных объектов: элементов массивов, записей в базах данных, машинных адресов и т. д. По своей природе множество целых чисел дискретно, т. к. состоит из отдельных элементов.
И хотя любое целое число можно рассматривать как вещественное, но с нулевой дробной частью, предусмотрены специальные способы представления целых чисел. Это обеспечивает: эффективное расходование памяти, повышение быстродействия, повышение точности вычислений за счёт введения операции деления нацело с остатком.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (под целые числа обычно отводится 8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда.
Беззнаковое представление можно использовать только для неотрицательных целых чисел.
Для получения компьютерного представления беззнакового целого числа в n-разрядной ячейке памяти достаточно перевести его в двоичную систему счисления и, при необходимости, дополнить полученный результат слева нулями до n-разрядов.
Например, десятичные числа 130 и 39 в восьмиразрядном представлении будут иметь вид:
При знаковом представлении целых чисел старший разряд ячейки отводится под знак (0 — для положительных, 1 — для отрицательных чисел), а остальные разряды — под цифры числа.
Представление числа в привычной для человека форме «знак-величина», при которой старший разряд ячейки отводится под знак, а остальные разряды — под цифры числа, называется прямым кодом.
В математике множество целых чисел бесконечно.
Компьютер работает с ограниченным множеством целых чисел.
Прямой код положительного числа отличается от прямого кода равного по абсолютной величине отрицательного числа только содержимым знакового разряда.
В прямом коде числа можно хранить, но выполнение арифметических операций над числами в прямом коде затруднено — оно требует более сложной архитектуры центрального процессора, «умеющего» выполнять не только сложение, но и вычитание, а также «знающего» особый алгоритм обработки не имеющего «веса» знакового разряда. Этих трудностей позволяет избежать использование дополнительного кода.
Чтобы понять сущность дополнительного кода, рассмотрим работу реверсивного счётчика, последовательность показаний которого можно представить в виде замкнутого кольца из чисел (рис. 3.5).
Рис. 3.5. Реверсивный счётчик
При возрастании показаний счётчика до максимального, например до 999, следующими его состояниями должны быть 1000, 1001, 1002 и т. д. Но для изображения старшей единицы в счётчике не хватает разряда, происходит переполнение разрядной сетки. Поэтому мы увидим 000, 001, 002 и т. д.
1 + 999 = 1000;
2 + 998 = 1000;
3 + 997 = 1000.
С учётом того что единица переполнения теряется, мы, сложив число и код противоположного ему числа, получаем ноль!
Вот ещё несколько примеров:
5-2 = 5 + [-2] = 5 + 998 = 1003;
7-5 = 7 + [-5] = 7 + 995 = 1002.
Для устранения неоднозначности в кольце будем считать половину состояний (0-499) кодами нуля и положительных чисел, а оставшуюся половину (500-999) — кодами отрицательных чисел.
Рассмотрим алгоритм получения дополнительного n-разрядного кода отрицательного числа:
1) модуль числа представить прямым кодом в n двоичных разрядах;
2) значения всех разрядов инвертировать (все нули заменить единицами, а единицы — нулями);
3) к полученному представлению, рассматриваемому как n-разрядное неотрицательное двоичное число, прибавить единицу.
Использование дополнительного кода позволяет свести операцию вычитания чисел к операции поразрядного сложения кодов этих чисел.
Выполним эту операцию в 16-разрядных машинных кодах.
Рассмотрим полученный результат. Это отрицательное число (об этом говорит 1 в знаковом разряде), представленное в дополнительном коде. Перейдём к прямому коду модуля соответствующего числа, по которому сможем восстановить десятичное представление результата.
Прямой код можно получить из дополнительного кода, если применить к нему операцию инвертирования и прибавить единицу.
13.2. Представление вещественных чисел
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
Попробуйте обосновать это утверждение.
Вещественные числа записываются в естественной или в экспоненциальной форме.
В жизни мы чаще пользуемся естественной формой записи чисел, при которой: число представляется последовательностью десятичных цифр со знаком плюс или минус, знак плюс может опускаться, для разделения целой и дробной частей числа используется запятая.
Например, длину некоторого отрезка, равного 47,8 см, можно записать так:
Такое многообразие вариантов записи в экспоненциальной форме одного и того же числа не всегда удобно. Для однозначного представления вещественных чисел в компьютере используется нормализованная форма.
Примеры нормализации чисел:
Диапазон вещественных чисел в памяти компьютера очень широк, но, тем не менее, ограничен. Множество вещественных чисел, которые могут быть представлены в компьютере, конечно.
Поясним это на примере калькулятора, который производит вычисления в десятичной системе счисления. Пусть это будет калькулятор с десятью знакоместами на дисплее:
• 6 знакомест отводится под мантиссу (одно знакоместо отводится под знак мантиссы, четыре — под цифры мантиссы, одно — под точку, разделяющую целую и дробную части мантиссы);
• одно знакоместо отводится под символ «Е»;
• три знакоместа отводятся под порядок (одно — под знак порядка, два — под цифры порядка).
У калькуляторов первая значащая цифра, с которой и начинается мантисса, изображается перед точкой.
Число 12,34 в таком калькуляторе будет представлено как +1.234Е+01.
Число 12,35 будет представлено как + 1.235Е+01.
Как известно, между числами 12,34 и 12,35 находится бесконечное множество вещественных чисел, например: 12,341; 12,3412; 12,34123 и т. д.
Каждое из этих чисел в нашем калькуляторе будет представлено как + 1.234Е+01. Для последних разрядов у нас просто не хватает знакомест! Аналогичная ситуация имеет место и в компьютерном представлении вещественных чисел, независимо от того, ячейки какой разрядности там использованы.
Получается, что точно мы можем представить в компьютере лишь некоторую конечную часть множества вещественных чисел, а остальные числа — лишь приближённо.
Таким образом, множество вещественных чисел, представляемых в компьютере, дискретно, конечно и ограничено.
САМОЕ ГЛАВНОЕ
В математике множество целых чисел дискретно, бесконечно и не ограничено.
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. В любом случае компьютерное представление целых чисел дискретно, конечно и ограничено.
В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.
Вопросы и задания
*7. Найдите десятичные эквиваленты чисел, представленных в дополнительном коде: 1) 00000100; 2) 11111001.
1) в прямом коде;
2) в дополнительном коде?
9. Вычислите с помощью калькулятора (приложение Windows) в режиме «Программист» следующие примеры:
Как вы можете объяснить полученные результаты?
10. Запишите десятичные числа в нормализованной форме:
1) 217,934; 2) 75321; 3) 10,0101; 4) 200450.
11. Сравните следующие числа:
12. Выполните операцию сложения:
13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?
14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?
*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.