машинное обучение с чего начать
Машинное обучение: с чего начать или как построить первую модель
В качестве первой задачи для машинного обучения возьмем что-то понятное и простое, например, прогноз стоимости жилья. Готовый датасет можно найти на сайте kaggle. На первых шагах обучения не стоит брать датасеты с большим количеством переменных, например, «House Prices: Advanced Regression Techniques» состоит из 80 переменных и advanced regression, остановимся на «House Sales in King County, USA» с 21 параметром. Скачиваем данные и анализируем предоставленное описание. В наличии дата, цена, количество спален, ванных комнат, общая и жилая площадь, этажность, оценка вида, вид на море, оценка общего состояния, грейд (оценка строительства и дизайна), площадь над и под уровнем земли, год постройки, год последнего ремонта, код зоны, координаты (долгота и широта), данные о площади домов 15 соседей.
Итак, мы выбрали задачу и готовы приступить к ее решению. Решение будет включать два этапа: анализ данных и построение моделей.
1. Работа с данными.
Сделаем отступление и отдельно отметим важность анализа данных. В настоящий момент все более-менее популярные алгоритмы уже написаны в виде библиотек и непосредственное построение модели сводится к нескольким строкам кода, например, k-ближайших соседей из sklearn в python:
Всего четыре строчки кода для получения результата. Так в чем же сложность? Сложность заключается в получении того самого X_train – данных, которые подаются на вход модели. Известный принцип «мусор на входе» = «мусор на выходе» (Англ. Garbage in – garbage out (GIGO)) в моделировании работает более чем на 100% и именно от работы с данными во многом будет зависеть качество полученного решения задачи машинного обучения.
Для анализа данных мы будем использовать pandas, для понимания и оценки «на глаз» используем простые графики из seaborn.
Импортируем библиотеки, читаем данные, выведем несколько записей из массива данных, посмотрим на типы данных и пропуски в них.
Массив данных состоит из 21613 записей без пропусков в данных и содержит только 1 текстовое поле date.
С каждым признаком поработаем подробнее и начнем с самого простого – откинем id (не несет полезной информации), zipcode (код зоны, где расположен дом) и координаты (lat & long), так как мы только знакомимся c machine learning, а корректное преобразование географических данных слишком специфично для начинающего специалиста.
Теперь посмотрим на дату объявления. Формат даты задан YYYYMMDDT000000, в целом ее тоже можно было бы удалить из датасета, но у нас есть поля год постройки (yr_built) и год последнего ремонта (yr_renovated), которые заданы в в формате года (YYYY), что не очень информативно. Оперируя датой объявления можно преобразовать год в возраст вычитанием (год объявления — год постройки / год ремонта). Отметим по части домов год ремонта стоит 0, и, предположив, что это означает отсутствие ремонта с постройки, заменим нули в году ремонта на год постройки, предварительно убедившись, что в данных отсутствуют некорректные записи, где год ремонта меньше года постройки:
Следующим параметром проанализируем цену и воспользуемся для этого «Ящиком с усами» (Box plot). Ящик с усами – простой и удобный график, показывающий одномерное распределение вероятностей, или, проще говоря, концентрацию данных. Отрисовывает медиану (линия в центре), верхний и нижний квартили (стороны ящика), края статистически значимой выборки («усы») и выбросы (точки за «усами»). Легко понять по картинке на нормальном распределении (справа). График позволяет быстро оценить где располагается большая часть данных (50% находятся внутри ящика), их симметричность (смещение медианы к одной из сторон ящика и/или длина «усов») и степень разброса – дисперсию (размеры ящика, размеры усов и количество точек-выбросов).
Можно построить распределение только этого признака по всему массиву, но информативнее будет использовать 2 оси – например, цену и количество спален, что в свою очередь также покажет наличие связи между признаками:
Out price & bedrooms:
Из графика сразу видно наличие экстремальных значений price и bedrooms (только представьте дом с 33 спальнями! J). Наличие таких значений (иначе называемых как выбросы) в целевом признаке price часто приводит к переобучению модели, так именно они будут давать большую ошибку, которую алгоритмы стараются минимизировать. Из графика видно, что большая часть (если посчитать – 93,22%) лежит в диапазоне 0-1млн, а свыше 2млн – всего 198 значений (0,92%). От 1% датасета можно избавиться практически безболезненно, поэтому вызвав простой просмотр 217 записей предварительно отсортировав по цене, увидим искомую отметку price в 1 965 000 и удалим все что выше этой цены.
Подумаем немного над признаком bedrooms. Мы видим 13 домов с bedrooms = 0, а также странную запись о доме с 33 bedrooms. Поступим также как и с price, удалив нули из bedroms (а заодно и bathrooms):
Касательно дома с 33 спальнями – учитывая цену, можно предположить что это опечатка и спален на самом деле 3. Сравним жилую площадь этого дома (1620) со средней жилой площадью домов с 3 спальнями (1798,2), что ж вероятно наша догадка верна, поэтому просто изменим это значение на 3 и еще раз построим предыдущий box plot:
Чтож, значительно лучше. Аналогично bedrooms посмотрим и на bathrooms. Нулевые значения мы удалили, другие экстремальные значения в поле отсутствуют:
В полях sqft_living, floors, waterfront, view, condition, grade, sqft_living15 также все значения более-менее реальны, их трогать не будем:
А вот с sqft_lot и sqft_lot15 нужно что-то придумать и из-за больших значений вполне подойдет логарифмирование:
sqft_lot до и после:
sqft_above и sqft_basement – составные части sqft_living, поэтому также трогать их не будем.
На этом с предварительным анализом мы закончим и посмотрим на тепловую карту корреляций:
Изучив карту корреляций видим, что иногда признаки сильно коррелированы между собой, поэтому удалим часть признаков с высокой корреляцией – sqft_lot15 (оставим sqft_lot), yr_built (оставим yr_renovated), sqft_above (sqft_living).
На этом закончим работу с данными и перейдем к созданию модели.
В данной части мы построим 2 модели: линейную регрессию и дерево решений.
Все необходимые нам модели содержаться в библиотеке sklearn.
Для начала отделим целевую переменную от остальных данных для обучения, а также разделим выборки на обучающую (70%) и тестовую (30%, на которой мы проверим как работает модель):
Также из sklearn для оценки модели загрузим 3 метрики — mean_absolute_error (средняя абсолютная ошибка), mean_squared_error (Среднеквадратическое отклонение), r2_score (коэффициент детерминации):
Начнем с линейной регрессии:
Исходя из метрик можно сделать вывод о том, что Линейная регрессия показала лучший результат, поэтому логичнее выбрать ее. Однако, мы не задавались вопросами из чего состоит ошибка модели, не является ли модель переобученной, и пр. Вполне вероятно, что к ухудшению результата DecisionTreeRegressor приводит именно переобучение, так как мы даже не ограничивали глубину дерева в параметрах модели. Можем легко проверить это перебрирая глубину деревьев в коротком цикле:
Очевидно, что лучший показатель при max_depth=7, и, посмотрев, на метрики (MAE: 124861.441, √MSE 175322.737, R2_score: 0.626) становиться понятно, что модель с таким ограничением аналогична линейной регрессии по качеству.
Также мы можем попробовать оценить какие признаки оказались наиболее важны для модели для прогноза стоимости:
Исходя из графика видно, что на стоимость больше всего влияет grade – общая субъективная оценка дома риелторской компанией (что, кстати, говорит о компетентности оценки :-))), на втором месте – площадь дома, а на третьем – год последнего ремонта. Показатели количества спален, ванных комнат, этажей же модель посчитала незначимыми для прогноза.
Для лучшего понимания результатов, посчитаем среднюю ошибку в % — по линейной регрессии средняя ошибка 27,5%, то есть модель ошибается чуть больше, чем на четверть при прогнозе стоимости дома, что довольно много.
Можно ли улучшить результаты? Да, несомненно, на текущем этапе мы получили только базовое решение – некую отправную точку для сравнения лучше или хуже будут модели, которые мы можем создать более сложными методами или применяя более сложную обработку данных.
Мы только чуть-чуть затронули вопрос переобучения и совсем не прикасались к тому, из чего состоит ошибка модели и многим другим аспектам создания модели. Как правило, для ответов на эти вопросы и нахождения оптимального решения используют разнообразные методы валидации моделей, но об этом мы напишем в следующих статях.
Машинное обучение — это легко
Для кого эта статья?
Каждый, кому будет интересно затем покопаться в истории за поиском новых фактов, или каждый, кто хотя бы раз задавался вопросом «как же все таки это, машинное обучение, работает», найдёт здесь ответ на интересующий его вопрос. Вероятнее всего, опытный читатель не найдёт здесь для себя ничего интересного, так как программная часть оставляет желать лучшего несколько упрощена для освоения начинающими, однако осведомиться о происхождении машинного обучения и его развитии в целом не помешает никому.
В цифрах
С каждым годом растёт потребность в изучении больших данных как для компаний, так и для активных энтузиастов. В таких крупных компаниях, как Яндекс или Google, всё чаще используются такие инструменты для изучения данных, как язык программирования R, или библиотеки для Python (в этой статье я привожу примеры, написанные под Python 3). Согласно Закону Мура (а на картинке — и он сам), количество транзисторов на интегральной схеме удваивается каждые 24 месяца. Это значит, что с каждым годом производительность наших компьютеров растёт, а значит и ранее недоступные границы познания снова «смещаются вправо» — открывается простор для изучения больших данных, с чем и связано в первую очередь создание «науки о больших данных», изучение которого в основном стало возможным благодаря применению ранее описанных алгоритмов машинного обучения, проверить которые стало возможным лишь спустя полвека. Кто знает, может быть уже через несколько лет мы сможем в абсолютной точности описывать различные формы движения жидкости, например.
Анализ данных — это просто?
Да. А так же интересно. Наряду с особенной важностью для всего человечества изучать большие данные стоит относительная простота в самостоятельном их изучении и применении полученного «ответа» (от энтузиаста к энтузиастам). Для решения задачи классификации сегодня имеется огромное количество ресурсов; опуская большинство из них, можно воспользоваться средствами библиотеки Scikit-learn (SKlearn). Создаём свою первую обучаемую машину:
Вот мы и создали простейшую машину, способную предсказывать (или классифицировать) значения аргументов по их признакам.
— Если все так просто, почему до сих пор не каждый предсказывает, например, цены на валюту?
С этими словами можно было бы закончить статью, однако делать я этого, конечно же, не буду (буду конечно, но позже) существуют определенные нюансы выполнения корректности прогнозов для поставленных задач. Далеко не каждая задача решается вот так легко (о чем подробнее можно прочитать здесь)
Ближе к делу
— Получается, зарабатывать на этом деле я не сразу смогу?
Итак, сегодня нам потребуются:
Дальнейшее использование требует от читателя некоторых знаний о синтаксисе Python и его возможностях (в конце статьи будут представлены ссылки на полезные ресурсы, среди них и «основы Python 3»).
Как обычно, импортируем необходимые для работы библиотеки:
— Ладно, с Numpy всё понятно. Но зачем нам Pandas, да и еще read_csv?
Иногда бывает удобно «визуализировать» имеющиеся данные, тогда с ними становится проще работать. Тем более, большинство датасетов с популярного сервиса Kaggle собрано пользователями в формате CSV.
— Помнится, ты использовал слово «датасет». Так что же это такое?
Датасет — выборка данных, обычно в формате «множество из множеств признаков» → «некоторые значения» (которыми могут быть, например, цены на жильё, или порядковый номер множества некоторых классов), где X — множество признаков, а y — те самые некоторые значения. Определять, например, правильные индексы для множества классов — задача классификации, а искать целевые значения (такие как цена, или расстояния до объектов) — задача ранжирования. Подробнее о видах машинного обучения можно прочесть в статьях и публикациях, ссылки на которые, как и обещал, будут в конце статьи.
Знакомимся с данными
Предложенный датасет можно скачать здесь. Ссылка на исходные данные и описание признаков будет в конце статьи. По представленным параметрам нам предлагается определять, к какому сорту относится то или иное вино. Теперь мы можем разобраться, что же там происходит:
Работая в Jupyter notebook, получаем такой ответ:
Это значит, что теперь нам доступны данные для анализа. В первом столбце значения Grade показывают, к какому сорту относится вино, а остальные столбцы — признаки, по которым их можно различать. Попробуйте ввести вместо data.head() просто data — теперь для просмотра вам доступна не только «верхняя часть» датасета.
Простая реализация задачи на классификацию
Переходим к основной части статьи — решаем задачу классификации. Всё по порядку:
Создаем массивы, где X — признаки (с 1 по 13 колонки), y — классы (0ая колонка). Затем, чтобы собрать тестовую и обучающую выборку из исходных данных, воспользуемся удобной функцией кросс-валидации train_test_split, реализованной в scikit-learn. С готовыми выборками работаем дальше — импортируем RandomForestClassifier из ensemble в sklearn. Этот класс содержит в себе все необходимые для обучения и тестирования машины методы и функции. Присваиваем переменной clf (classifier) класс RandomForestClassifier, затем вызовом функции fit() обучаем машину из класса clf, где X_train — признаки категорий y_train. Теперь можно использовать встроенную в класс метрику score, чтобы определить точность предсказанных для X_test категорий по истинным значениям этих категорий y_test. При использовании данной метрики выводится значение точности от 0 до 1, где 1 100% Готово!
— Неплохая точность. Всегда ли так получается?
Для решения задач на классификацию важным фактором является выбор наилучших параметров для обучающей выборки категорий. Чем больше, тем лучше. Но не всегда (об этом также можно прочитать подробнее в интернете, однако, скорее всего, я напишу об этом ещё одну статью, рассчитанную на начинающих).
— Слишком легко. Больше мяса!
Для наглядного просмотра результата обучения на данном датасете можно привести такой пример: оставив только два параметра, чтобы задать их в двумерном пространстве, построим график обученной выборки (получится примерно такой график, он зависит от обучения):
Да, с уменьшением количества признаков, падает и точность распознавания. И график получился не особенно-то красивым, но это и не решающее в простом анализе: вполне наглядно видно, как машина выделила обучающую выборку (точки) и сравнила её с предсказанными (заливка) значениями.
Предлагаю читателю самостоятельно узнать почему и как он работает.
Последнее слово
Надеюсь, данная статья помогла хоть чуть-чуть освоиться Вам в разработке простого машинного обучения на Python. Этих знаний будет достаточно, чтобы продолжить интенсивный курс по дальнейшему изучению BigData+Machine Learning. Главное, переходить от простого к углубленному постепенно. А вот полезные ресурсы и статьи, как и обещал:
Материалы, вдохновившие автора на создание данной статьи
Более углубленное изучение использования машинного обучения с Python стало возможным, и более простым благодаря преподавателям с Яндекса — этот курс обладает всеми необходимыми средствами объяснения, как же работает вся система, рассказывается подробнее о видах машинного обучения итд.
Файл сегодняшнего датасета был взят отсюда и несколько модифицирован.
Где брать данные, или «хранилище датасетов» — здесь собрано огромное количество данных от самых разных источников. Очень полезно тренироваться на реальных данных.
Буду признателен за поддержку по улучшению данной статьи, а так же готов к любому виду конструктивной критики.
Введение в машинное обучение
1.1 Введение
Благодаря машинному обучению программист не обязан писать инструкции, учитывающие все возможные проблемы и содержащие все решения. Вместо этого в компьютер (или отдельную программу) закладывают алгоритм самостоятельного нахождения решений путём комплексного использования статистических данных, из которых выводятся закономерности и на основе которых делаются прогнозы.
Технология машинного обучения на основе анализа данных берёт начало в 1950 году, когда начали разрабатывать первые программы для игры в шашки. За прошедшие десятилетий общий принцип не изменился. Зато благодаря взрывному росту вычислительных мощностей компьютеров многократно усложнились закономерности и прогнозы, создаваемые ими, и расширился круг проблем и задач, решаемых с использованием машинного обучения.
Чтобы запустить процесс машинного обучение, для начала необходимо загрузить в компьютер Датасет(некоторое количество исходных данных), на которых алгоритм будет учиться обрабатывать запросы. Например, могут быть фотографии собак и котов, на которых уже есть метки, обозначающие к кому они относятся. После процесса обучения, программа уже сама сможет распознавать собак и котов на новых изображениях без содержания меток. Процесс обучения продолжается и после выданных прогнозов, чем больше данных мы проанализировали программой, тем более точно она распознает нужные изображения.
Благодаря машинному обучению компьютеры учатся распознавать на фотографиях и рисунках не только лица, но и пейзажи, предметы, текст и цифры. Что касается текста, то и здесь не обойтись без машинного обучения: функция проверки грамматики сейчас присутствует в любом текстовом редакторе и даже в телефонах. Причем учитывается не только написание слов, но и контекст, оттенки смысла и другие тонкие лингвистические аспекты. Более того, уже существует программное обеспечение, способное без участия человека писать новостные статьи (на тему экономики и, к примеру, спорта).
1.2 Типы задач машинного обучения
Все задачи, решаемые с помощью ML, относятся к одной из следующих категорий.
1)Задача регрессии – прогноз на основе выборки объектов с различными признаками. На выходе должно получиться вещественное число (2, 35, 76.454 и др.), к примеру цена квартиры, стоимость ценной бумаги по прошествии полугода, ожидаемый доход магазина на следующий месяц, качество вина при слепом тестировании.
2)Задача классификации – получение категориального ответа на основе набора признаков. Имеет конечное количество ответов (как правило, в формате «да» или «нет»): есть ли на фотографии кот, является ли изображение человеческим лицом, болен ли пациент раком.
3)Задача кластеризации – распределение данных на группы: разделение всех клиентов мобильного оператора по уровню платёжеспособности, отнесение космических объектов к той или иной категории (планета, звёзда, чёрная дыра и т. п.).
4)Задача уменьшения размерности – сведение большого числа признаков к меньшему (обычно 2–3) для удобства их последующей визуализации (например, сжатие данных).
5)Задача выявления аномалий – отделение аномалий от стандартных случаев. На первый взгляд она совпадает с задачей классификации, но есть одно существенное отличие: аномалии – явление редкое, и обучающих примеров, на которых можно натаскать машинно обучающуюся модель на выявление таких объектов, либо исчезающе мало, либо просто нет, поэтому методы классификации здесь не работают. На практике такой задачей является, например, выявление мошеннических действий с банковскими картами.
1.3 Основные виды машинного обучения
Основная масса задач, решаемых при помощи методов машинного обучения, относится к двум разным видам: обучение с учителем (supervised learning) либо без него (unsupervised learning). Однако этим учителем вовсе не обязательно является сам программист, который стоит над компьютером и контролирует каждое действие в программе. «Учитель» в терминах машинного обучения – это само вмешательство человека в процесс обработки информации. В обоих видах обучения машине предоставляются исходные данные, которые ей предстоит проанализировать и найти закономерности. Различие лишь в том, что при обучении с учителем есть ряд гипотез, которые необходимо опровергнуть или подтвердить. Эту разницу легко понять на примерах.
Машинное обучение с учителем
Предположим, в нашем распоряжении оказались сведения о десяти тысячах московских квартир: площадь, этаж, район, наличие или отсутствие парковки у дома, расстояние от метро, цена квартиры и т. п. Нам необходимо создать модель, предсказывающую рыночную стоимость квартиры по её параметрам. Это идеальный пример машинного обучения с учителем: у нас есть исходные данные (количество квартир и их свойства, которые называются признаками) и готовый ответ по каждой из квартир – её стоимость. Программе предстоит решить задачу регрессии.
Ещё пример из практики: подтвердить или опровергнуть наличие рака у пациента, зная все его медицинские показатели. Выяснить, является ли входящее письмо спамом, проанализировав его текст. Это всё задачи на классификацию.
Машинное обучение без учителя
В случае обучения без учителя, когда готовых «правильных ответов» системе не предоставлено, всё обстоит ещё интереснее. Например, у нас есть информация о весе и росте какого-то количества людей, и эти данные нужно распределить по трём группам, для каждой из которых предстоит пошить рубашки подходящих размеров. Это задача кластеризации. В этом случае предстоит разделить все данные на 3 кластера (но, как правило, такого строгого и единственно возможного деления нет).
Если взять другую ситуацию, когда каждый из объектов в выборке обладает сотней различных признаков, то основной трудностью будет графическое отображение такой выборки. Поэтому количество признаков уменьшают до двух или трёх, и становится возможным визуализировать их на плоскости или в 3D. Это – задача уменьшения размерности.
1.4 Основные алгоритмы моделей машинного обучения
1. Дерево принятия решений
Это метод поддержки принятия решений, основанный на использовании древовидного графа: модели принятия решений, которая учитывает их потенциальные последствия (с расчётом вероятности наступления того или иного события), эффективность, ресурсозатратность.
Для бизнес-процессов это дерево складывается из минимального числа вопросов, предполагающих однозначный ответ — «да» или «нет». Последовательно дав ответы на все эти вопросы, мы приходим к правильному выбору. Методологические преимущества дерева принятия решений – в том, что оно структурирует и систематизирует проблему, а итоговое решение принимается на основе логических выводов.
2. Наивная байесовская классификация
Наивные байесовские классификаторы относятся к семейству простых вероятностных классификаторов и берут начало из теоремы Байеса, которая применительно к данному случаю рассматривает функции как независимые (это называется строгим, или наивным, предположением). На практике используется в следующих областях машинного обучения:
Всем, кто хоть немного изучал статистику, знакомо понятие линейной регрессии. К вариантам её реализации относятся и наименьшие квадраты. Обычно с помощью линейной регрессии решают задачи по подгонке прямой, которая проходит через множество точек. Вот как это делается с помощью метода наименьших квадратов: провести прямую, измерить расстояние от неё до каждой из точек (точки и линию соединяют вертикальными отрезками), получившуюся сумму перенести наверх. В результате та кривая, в которой сумма расстояний будет наименьшей, и есть искомая (эта линия пройдёт через точки с нормально распределённым отклонением от истинного значения).
Линейная функция обычно используется при подборе данных для машинного обучения, а метод наименьших квадратов – для сведения к минимуму погрешностей путем создания метрики ошибок.
4. Логистическая регрессия
Логистическая регрессия – это способ определения зависимости между переменными, одна из которых категориально зависима, а другие независимы. Для этого применяется логистическая функция (аккумулятивное логистическое распределение). Практическое значение логистической регрессии заключается в том, что она является мощным статистическим методом предсказания событий, который включает в себя одну или несколько независимых переменных. Это востребовано в следующих ситуациях:
Это целый набор алгоритмов, необходимых для решения задач на классификацию и регрессионный анализ. Исходя из того что объект, находящийся в N-мерном пространстве, относится к одному из двух классов, метод опорных векторов строит гиперплоскость с мерностью (N – 1), чтобы все объекты оказались в одной из двух групп. На бумаге это можно изобразить так: есть точки двух разных видов, и их можно линейно разделить. Кроме сепарации точек, данный метод генерирует гиперплоскость таким образом, чтобы она была максимально удалена от самой близкой точки каждой группы.
SVM и его модификации помогают решать такие сложные задачи машинного обучения, как сплайсинг ДНК, определение пола человека по фотографии, вывод рекламных баннеров на сайты.
Он базируется на алгоритмах машинного обучения, генерирующих множество классификаторов и разделяющих все объекты из вновь поступающих данных на основе их усреднения или итогов голосования. Изначально метод ансамблей был частным случаем байесовского усреднения, но затем усложнился и оброс дополнительными алгоритмами:
Кластеризация заключается в распределении множества объектов по категориям так, чтобы в каждой категории – кластере – оказались наиболее схожие между собой элементы.
Кластеризировать объекты можно по разным алгоритмам. Чаще всего используют следующие:
8. Метод главных компонент (PCA)
Метод главных компонент, или PCA, представляет собой статистическую операцию по ортогональному преобразованию, которая имеет своей целью перевод наблюдений за переменными, которые могут быть как-то взаимосвязаны между собой, в набор главных компонент – значений, которые линейно не коррелированы.
Практические задачи, в которых применяется PCA, – визуализация и большинство процедур сжатия, упрощения, минимизации данных для того, чтобы облегчить процесс обучения. Однако метод главных компонент не годится для ситуаций, когда исходные данные слабо упорядочены (то есть все компоненты метода характеризуются высокой дисперсией). Так что его применимость определяется тем, насколько хорошо изучена и описана предметная область.
9. Сингулярное разложение
В линейной алгебре сингулярное разложение, или SVD, определяется как разложение прямоугольной матрицы, состоящей из комплексных или вещественных чисел. Так, матрицу M размерностью [m*n] можно разложить таким образом, что M = UΣV, где U и V будут унитарными матрицами, а Σ – диагональной.
Одним из частных случаев сингулярного разложения является метод главных компонент. Самые первые технологии компьютерного зрения разрабатывались на основе SVD и PCA и работали следующим образом: вначале лица (или другие паттерны, которые предстояло найти) представляли в виде суммы базисных компонент, затем уменьшали их размерность, после чего производили их сопоставление с изображениями из выборки. Современные алгоритмы сингулярного разложения в машинном обучении, конечно, значительно сложнее и изощрённее, чем их предшественники, но суть их в целом нем изменилась.
10. Анализ независимых компонент (ICA)
Это один из статистических методов, который выявляет скрытые факторы, оказывающие влияние на случайные величины, сигналы и пр. ICA формирует порождающую модель для баз многофакторных данных. Переменные в модели содержат некоторые скрытые переменные, причем нет никакой информации о правилах их смешивания. Эти скрытые переменные являются независимыми компонентами выборки и считаются негауссовскими сигналами.
В отличие от анализа главных компонент, который связан с данным методом, анализ независимых компонент более эффективен, особенно в тех случаях, когда классические подходы оказываются бессильны. Он обнаруживает скрытые причины явлений и благодаря этому нашёл широкое применение в самых различных областях – от астрономии и медицины до распознавания речи, автоматического тестирования и анализа динамики финансовых показателей.
1.5 Примеры применения в реальной жизни
Пример 1. Диагностика заболеваний
Пациенты в данном случае являются объектами, а признаками – все наблюдающиеся у них симптомы, анамнез, результаты анализов, уже предпринятые лечебные меры (фактически вся история болезни, формализованная и разбитая на отдельные критерии). Некоторые признаки – пол, наличие или отсутствие головной боли, кашля, сыпи и иные – рассматриваются как бинарные. Оценка тяжести состояния (крайне тяжёлое, средней тяжести и др.) является порядковым признаком, а многие другие – количественными: объём лекарственного препарата, уровень гемоглобина в крови, показатели артериального давления и пульса, возраст, вес. Собрав информацию о состоянии пациента, содержащую много таких признаков, можно загрузить её в компьютер и с помощью программы, способной к машинному обучению, решить следующие задачи:
Пример 2. Поиск мест залегания полезных ископаемых
В роли признаков здесь выступают сведения, добытые при помощи геологической разведки: наличие на территории местности каких-либо пород (и это будет признаком бинарного типа), их физические и химические свойства (которые раскладываются на ряд количественных и качественных признаков).
Для обучающей выборки берутся 2 вида прецедентов: районы, где точно присутствуют месторождения полезных ископаемых, и районы с похожими характеристиками, где эти ископаемые не были обнаружены. Но добыча редких полезных ископаемых имеет свою специфику: во многих случаях количество признаков значительно превышает число объектов, и методы традиционной статистики плохо подходят для таких ситуаций. Поэтому при машинном обучении акцент делается на обнаружение закономерностей в уже собранном массиве данных. Для этого определяются небольшие и наиболее информативные совокупности признаков, которые максимально показательны для ответа на вопрос исследования – есть в указанной местности то или иное ископаемое или нет. Можно провести аналогию с медициной: у месторождений тоже можно выявить свои синдромы. Ценность применения машинного обучения в этой области заключается в том, что полученные результаты не только носят практический характер, но и представляют серьёзный научный интерес для геологов и геофизиков.
Пример 3. Оценка надёжности и платёжеспособности кандидатов на получение кредитов
С этой задачей ежедневно сталкиваются все банки, занимающиеся выдачей кредитов. Необходимость в автоматизации этого процесса назрела давно, ещё в 1960–1970-е годы, когда в США и других странах начался бум кредитных карт.
Лица, запрашивающие у банка заём, – это объекты, а вот признаки будут отличаться в зависимости от того, физическое это лицо или юридическое. Признаковое описание частного лица, претендующего на кредит, формируется на основе данных анкеты, которую оно заполняет. Затем анкета дополняется некоторыми другими сведениями о потенциальном клиенте, которые банк получает по своим каналам. Часть из них относятся к бинарным признакам (пол, наличие телефонного номера), другие — к порядковым (образование, должность), большинство же являются количественными (величина займа, общая сумма задолженностей по другим банкам, возраст, количество членов семьи, доход, трудовой стаж) или номинальными (имя, название фирмы-работодателя, профессия, адрес).
Для машинного обучения составляется выборка, в которую входят кредитополучатели, чья кредитная история известна. Все заёмщики делятся на классы, в простейшем случае их 2 – «хорошие» заёмщики и «плохие», и положительное решение о выдаче кредита принимается только в пользу «хороших».
Более сложный алгоритм машинного обучения, называемый кредитным скорингом, предусматривает начисление каждому заёмщику условных баллов за каждый признак, и решение о предоставлении кредита будет зависеть от суммы набранных баллов. Во время машинного обучения системы кредитного скоринга вначале назначают некоторое количество баллов каждому признаку, а затем определяют условия выдачи займа (срок, процентную ставку и остальные параметры, которые отражаются в кредитном договоре). Но существует также и другой алгоритм обучения системы – на основе прецедентов.