компилятор java преобразует исходный код java

Создание, компиляция и выполнения Java программ

Перед тем как программа может быть выполнена, её необходимо создать и скомпилировать. Если в вашей программе возникли ошибки компиляции, вам необходимо изменить программу, чтобы исправить их, а затем перекомпилировать её. Если в вашей программе возникли ошибки выполнения, или она не приводит к правильному результату, вам необходимо изменить программу, перекомпилировать её и запустить снова. Этот процесс и является созданием (разработкой) программы.

Для создания и редактирования исходного кода Java вы можете использовать любой текстовый редактор или IDE. Этот раздел демонстрирует, как создавать, компилировать и запускать программы Java из командной строки. В разделе «Компиляция и запуск Java программ в NetBeans» показано, как это делать в IDE на примере NetBeans.

Можно вообще обойтись без IDE, а писать исходный код в любом текстовом редакторе (например, в Notepad), а компилировать в командной строке.

компилятор java преобразует исходный код java

Внимание: файл с исходным кодом должен иметь расширение .java и иметь в точности такое же имя, как и имя публичного (public) класса. Например, файл с исходным кодом:

должен называться Welcome.java, поскольку имя public класса – Welcome.

Компилятор Java преобразовывает файл с исходным кодом Java в файл с байткодом Java. Следующая команда компилирует Welcome.java:

Если нет синтаксических ошибок, компилятор генерирует файл байкода с расширением .class. Следовательно, приведённая выше команда генерирует файл с названием Welcome.class.

Чтобы иметь возможность компилировать и запускать программы, вы должны установить JDK. Как это сделать описано в инструкциях:

Язык Java – это высокоуровневый язык программирования, но байткод Java – это низкоуровневый язык. Байткод похож на машинные инструкции, но нейтрален к архитектуре (не зависит от архитектуры) и может запускаться на любой платформе, которая имеет виртуальную машину Java – Java Virtual Machine (JVM). В отличие от физической машины, виртуальная машина – это программа, которая интерпретирует байткод Java. Это одно из главных преимуществ Java: байткод Java может работать на различных аппаратных платформах и операционных системах. Исходный код Java компилируется в байткод Java, а байткод Java интерпретируется виртуальной машиной Java. Ваш код Java может использовать код библиотеки Java. JVM выполняет ваш код вместе с кодом из библиотеки.

Выполнить Java программу – это значит запустить байткод программы. Вы можете выполнить байткод на любой платформе с JVM, которая является интерпретатором. Она (виртуальная машина Java) переводит отдельные инструкции байткода в целевой машинный языковой код. Это делается последовательно – одна инструкция за раз, а не вся программ за один присест. Каждый шаг немедленно выполняется, сразу после перевода.

Следующая команда выполняет байткод для программы, которая приведена выше:

На скриншоте ниже показан процесс компиляции и запуска:

компилятор java преобразует исходный код java

Внимание: не используйте расширение .class в команде, когда запускаете программу. Используйте ИмяКласса для запуска программы. Если вы в командной строке используете ИмяКласса.class, то система будет пытаться работать с файлом ИмяКласса.class.class.

Справка: когда выполняется Java программа, JVM начинает с загрузки байткода класса в память, используя программу под названием загрузчик классов (class loader). Если ваша программа использует другие классы, загрузчик классов динамически подгружает их перед тем, как они понадобятся. После загрузки класса, JVM использует программу под названием контролёр байткода (bytecode verifier) для проверки правильности байткода и проверки, что байткод не нарушает ограничений безопасности Java. Java обеспечивает строгую защиту, чтобы убедиться, что файлы классов Java не подделаны и не вредят вашему компьютеру.

Педагогическое примечание: ваш инструктор может требовать от вас использовать пакеты для организации программ. Например, все программы из этой части можно поместить в пакет chapter2. Подробности о пакетах и пространствах имён будут рассмотрены далее. Также посмотрите раздел «Почему NetBeans всегда использует package».

Типичные ошибки компиляции и запуска Java программ

Команда javac не найдена

Если при запуске javac, т.е. при попытке компиляции Java программы вы получаете ошибку:

Это означает, что JDK не установлен. Либо установлен, но не настроены переменные окружения. Способы исправления очевидны:

Если JDK установлен, то можно обойтись без добавления переменной окружения. Для этого используйте абсолютный путь до исполнимого файла javac:

Ошибка Class names are only accepted if annotation processing is explicitly requested

Если попытаться скомпилировать программу следующим образом:

то возникнет ошибка:

Причина ошибки в том – что вы забыли указать расширение файла .java.

Ошибка записи (error while writing)

Компиляция заканчивается ошибкой:

Ошибка «class is public, should be declared in a file named»

который заканчивается примерной такой ошибкой

означает, что вы неправильно назвали класс в исходном коде программы. Имя класса должно совпадать с именем файла. В данном случае файл называется Welcome.java, а класс внутри программы назван Welcomee

Error: Could not find or load main class

Если попытаться запустить программу следующим образом:

то возникнет ошибка

Причина её в том, что не нужно было добавлять к названию файла расширение .class. Виртуальная машина автоматически добавляет расширение и в приведённом примере она ищет файл Welcome.class.class

Ошибка Error: Could not find or load main class при запуске Java программы по абсолютному пути

Эта ошибка возможно при запуске Java программы по абсолютному пути:

Ошибка возникает как в Windows, так и в Linux:

Если в терминале вы находитесь в той же директории, что и файл, который вы запускаете, то не нужно указывать абсолютный путь. Например, нужно запускать так:

компилятор java преобразует исходный код java

Если же вы находитесь в другой директории, то нужно использовать опцию -cp, после которой указать путь до каталога, где размещена запускаемая программа. А далее указать запускаемый файл без расширения .class:

компилятор java преобразует исходный код java

Как видно из скриншота, командная строка находится в папке C:\WINDOWS\system32. Файл, который нам нужно запустить, находится в папке C:\ (корень диска). Мы указываем после ключа -cp папку C:\, а затем пишем имя файла программы без расширения – Welcome.

Аналогично нужно поступать в Linux. Пример команды:

Ошибка Main method not found in class

Если при запуске вы столкнулись с ошибкой:

Это означает, что вы не указали метод main, либо написали слово неправильно (например, Main вместо main).

Особенности компиляции и запуска Java программ в Windows

Команда «javac» не является внутренней или внешней командой, исполняемой программой или пакетным файлом

Эта ошибка рассмотрена чуть выше. Для установки и настройки переменных окружения в Windows обратитесь к инструкции «Установка Java (JDK) в Windows».

Проблема с кодировкой в Java программах в командной строке Windows

Если вы написали программу, которая выводит кириллицу в консоль:

А в качестве результата получили крякозяблы:

компилятор java преобразует исходный код java

Значит кодировка, в которой выводит строки ваша программа, отличается от кодировки командной строки Windows.

Имеется несколько способов исправить эту проблему. Кстати, если для запуска консольных программ Java вы используете NetBeans, то он выводит строки в правильной кодировке. В Linux эта проблема также отсутствует. Если вам нужно поменять кодировку на время, то вы можете выполнить следующие команды:

Для того, чтобы смена кодировки командной строки Windows не сбрасывалась после закрытия и открытия командной строки, можно внести изменения в реестр Windows. Для этого нажмите Win+x, выберите «Выполнить», в открывшееся окно введите regedit. В открывшейся программе (редактор реестра Windows) перейдите к [HKEY_LOCAL_MACHINE\Software\Microsoft\Command Processor\Autorun] и измените (или добавьте) значение на @chcp 65001>nul

Источник

Инструменты для запуска и разработки Java приложений, компиляция, выполнение на JVM

Ни для кого не секрет, что на данный момент Java — один из самых популярных языков программирования в мире. Дата официального выпуска Java — 23 мая 1995 года.

Эта статья посвящена основам основ: в ней изложены базовые особенности языка, которые придутся кстати начинающим “джавистам”, а опытные Java-разработчики смогут освежить свои знания.

* Статья подготовлена на основе доклада Евгения Фраймана — Java разработчика компании IntexSoft.
В статье присутствуют ссылки на внешние материалы
.

компилятор java преобразует исходный код java

1. JDK, JRE, JVM

Java Development Kit — комплект разработчика приложений на языке Java. Он включает в себя Java Development Tools и среду выполнения Java — JRE (Java Runtime Environment).

Java development tools включают в себя около 40 различных тулов: javac (компилятор), java (лаунчер для приложений), javap (java class file disassembler), jdb (java debugger) и др.

Среда выполнения JRE — это пакет всего необходимого для запуска скомпилированной Java-программы. Включает в себя виртуальную машину JVM и библиотеку классов Java — Java Class Library.

JVM — это программа, предназначенная для выполнения байт-кода. Первое преимущество JVM — это принцип “Write once, run anywhere”. Он означает, что приложение, написанное на Java, будет работать одинаково на всех платформах. Это является большим преимуществом JVM и самой Java.

До появления Java, многие компьютерные программы были написаны под определенные компьютерные системы, а предпочтение отдавалось ручному управлению памятью, как более эффективному и предсказуемому. Со второй половины 1990-х годов, после появления Java, автоматическое управление памятью стало общей практикой.

Существует множество реализаций JVM, как коммерческих, так и с открытым кодом. Одна из целей создания новых JVM — увеличение производительности для конкретной платформы. Каждая JVM пишется под платформу отдельно, при этом есть возможность написать ее так, чтобы она работала быстрее на конкретной платформе. Самая распространённая реализация JVM — это JVM Hotspot от OpenJDK. Также есть реализации IBM J9, Excelsior JET.

2. Выполнение кода на JVM

Согласно спецификации Java SE, для того, чтобы получить код, работающий в JVM, необходимо выполнить 3 этапа:

3. Загрузчики классов и их иерархия

Вернемся к загрузчикам классов — это специальные классы, которые являются частью JVM. Они загружают классы в память и делают их доступными для выполнения. Загрузчики работают со всеми классами: и с нашими, и с теми, которые непосредственно нужны для Java.

Представьте ситуацию: мы написали свое приложение, и помимо стандартных классов там есть наши классы, и их очень много. Как с этим будет работать JVM? В Java реализована отложенная загрузка классов, иными словами lazy loading. Это значит, что загрузка классов не будет выполняться до тех пор, пока в приложении не встретится обращение к классу.

Иерархия загрузчиков классов

компилятор java преобразует исходный код java

Первый загрузчик классов — это Bootstrap classloader. Он написан на C++. Это базовый загрузчик, который загружает все системные классы из архива rt.jar. При этом, есть небольшое отличие между загрузкой классов из rt.jar и наших классов: когда JVM загружает классы из rt.jar, она не выполняет все этапы проверки, которые выполняются при загрузке любого другого класс-файла т.к. JVM изначально известно, что все эти классы уже проверены. Поэтому, включать в этот архив какие-либо свои файлы не стоит.

Следующий загрузчик — это Extension classloader. Он загружает классы расширений из папки jre/lib/ext. Допустим, вы хотите, чтобы какой-то класс загружался каждый раз при старте Java машины. Для этого вы можете скопировать исходный файл класса в эту папку, и он будет автоматически загружаться.

Еще один загрузчик — System classloader. Он загружает классы из classpath’а, который мы указали при запуске приложения.

Процесс загрузки классов происходит по иерархии:

4. Структура Сlass-файлов и процесс загрузки

Перейдем непосредственно к структуре Class-файлов.

Все числа, строки, указатели на классы, поля и методы хранятся в Сonstant pool — области памяти Meta space. Описание класса хранится там же и содержит имя, модификаторы, супер-класс, супер-интерфейсы, поля, методы и атрибуты. Атрибуты, в свою очередь, могут содержать любую дополнительную информацию.

Таким образом, при загрузке классов:

5. Исполнение байт-кода на JVM

В первую очередь, для исполнения байт-кода, JVM может его интерпретировать. Интерпретация — довольно медленный процесс. В процессе интерпретации, интерпретатор “бежит” построчно по класс-файлу и переводит его в команды, которые понятны JVM.

Также JVM может его транслировать, т.е. скомпилировать в машинный код, который будет исполняться непосредственно на CPU.

Команды, которые исполняются часто, не будут интерпретироваться, а сразу будут транслироваться.

6. Компиляция

Компилятор — это программа, которая преобразует исходные части программ, написанные на языке программирования высокого уровня, в программу на машинном языке, “понятную” компьютеру.

Компиляторы делятся на:

Также компиляторы могут классифицироваться по моменту компиляции:

7. Организация памяти в Java

Стек — это область памяти в Java, которая работает по схеме LIFO — “Last in — Fisrt Out” или “Последним вошел, первым вышел”.

компилятор java преобразует исходный код java

Он нужен для того, чтобы хранить методы. Переменные в стеке существуют до тех пор, пока выполняется метод в котором они были созданы.

Когда вызывается любой метод в Java, создается фрейм или область памяти в стеке, и метод кладется на его вершину. Когда метод завершает выполнение, он удаляется из памяти, тем самым освобождая память для следующих методов. Если память стека будет заполнена, Java бросит исключение java.lang.StackOverFlowError. К примеру, это может произойти, если у нас будет рекурсивная функция, которая будет вызывать сама себя и памяти в стеке не будет хватать.

Ключевые особенности стека:

Куча разбита на несколько более мелких частей, называемых поколениями:

компилятор java преобразует исходный код java

Почему отказались от Permanent generation? В первую очередь, это из-за ошибки, которая была связана с переполнением области: так как Perm имел константный размер и не мог расширяться динамически, рано или поздно память заканчивалась, кидалась ошибка, и приложение падало.

Meta space же имеет динамический размер, и во время исполнения он может расширяться до размеров памяти JVM.

Ключевые особенности кучи:

Основываясь на информации выше, рассмотрим, как происходит управление памятью на простом примере:

У нас есть класс App, в котором единственный метод main состоит из:

— примитивной переменой id типа int со значением 23
— ссылочной переменной pName типа String со значением Jon
— ссылочной переменной p типа person

компилятор java преобразует исходный код java

Как уже упоминалось, при вызове метода на вершине стека создаётся область памяти, в которой хранятся данные, необходимые этому методу для выполнения.
В нашем случае, это ссылка на класс person: сам объект хранится в куче, а в стеке хранится ссылка. Также в стек кладется ссылка на строку, а сама строка хранится в куче в String pool. Примитив хранится непосредственно в стеке.

Для вызова конструктора с параметрами Person (String) из метода main() в стеке, поверх предыдущего вызова main() создается в стеке отдельный фрейм, который хранит:

this — ссылка на текущий объект
— примитивное значение id
— ссылочную переменную personName, которая указывает на строку в String Pool.

После того, как мы вызвали конструктор, вызывается setPersonName(), после чего снова создается новый фрейм в стеке, где хранятся те же данные: ссылка на объект, ссылка на строку, значение переменной.

Таким образом, когда выполнится метод setter, фрейм пропадет, стек очистится. Далее выполняется конструктор, очищается фрейм, который был создан под конструктор, после чего метод main() завершает свою работу и тоже удаляется из стека.

Если будут вызваны другие методы, для них будут также созданы новые фреймы с контекстом этих конкретных методов.

8. Garbage collector

В куче работает Garbage collector — программа, работающая на виртуальной машине Java, которая избавляется от объектов, к которым невозможно получить доступ.

Разные JVM могут иметь различные алгоритмы сборки мусора, также существуют разные сборщики мусора.

Мы поговорим о самом простом сборщике Serial GC. Сборку мусора мы запрашиваем при помощи System.gc().

компилятор java преобразует исходный код java

Как уже было упомянуто выше, куча разбита на 2 области: New generation и Old generation.

New generation (младшее поколение) включает в себя 3 региона: Eden, Survivor 0 и Survivor 1.

Old generation включает в себя регион Tenured.

Что происходит, когда мы создаем в Java объект?

В первую очередь объект попадает в Eden. Если мы создали уже много объектов и в Eden уже нет места, срабатывает сборщик мусора и освобождает память. Это, так называемая, малая сборка мусора — на первом проходе он очищает область Eden и кладёт “выжившие” объекты в регион Survivor 0. Таким образом регион Eden полностью высвобождается.

Если произошло так, что область Eden снова была заполнена, garbage collector начинает работу с областью Eden и областью Survivor 0, которая занята на данный момент. После очищения выжившие объекты попадут в другой регион — Survivor 1, а два остальных останутся чистыми. При последующей сборке мусора в качестве региона назначения опять будет выбран Survivor 0. Именно поэтому важно, чтобы один из регионов Survivor всегда был пустым.

JVM следит за объектами, которые постоянно копируются и перемещаются из одного региона в другой. И для того, чтобы оптимизировать данный механизм, после определённого порога сборщик мусора перемещает такие объекты в регион Tenured.

Когда в Tenured места для новых объектов не хватает, происходит полная сборка мусора — Mark-Sweep-Compact.

компилятор java преобразует исходный код java

Во время этого механизма определяется, какие объекты больше не используются, регион очищается от этих объектов, и область памяти Tenured дефрагментируется, т.е. последовательно заполняется нужными объектами.

Источник

Виды компиляции в JVM: сеанс черной магии с разоблачением

Сегодня вашему вниманию предлагается перевод статьи, в котором на примерах разобраны варианты компиляции в JVM. Особое внимание уделено AOT-компиляции, поддерживаемой в Java 9 и выше.

Приятного чтения!

Полагаю, любой, кому доводилось программировать на Java, слышал о мгновенной компиляции (JIT), а, возможно, и о компиляции перед выполнением (AOT). Кроме того, не приходится объяснять, что такое «интерпретируемые» языки. В этой статье будет рассказано, каким образом все эти возможности реализованы в виртуальной машине Java, JVM.

Чтобы байт-код Java выполнял какую-либо конкретную работу, есть 3 возможности заставить его это сделать:

Ради полноты картины упомяну, что существует и четвертый подход – напрямую интерпретировать исходный код, но в Java так не принято. Так делается, например, в Python.
Теперь давайте разберемся, как “java” работает в качестве (1) интерпретатора (2) JIT-компилятора и/или (3) AOT-компилятора – и когда.

Если коротко – как правило, “java” делает и (1), и (2). Начиная с Java 9 возможен и третий вариант.

Итак, если скомпилировать и запустить вышеприведенный код, то вывод будет вполне ожидаемым (конечно, значения истекшего времени у вас получатся другими):

А теперь вопрос: является ли этот вывод результатом работы “java” как интерпретатора, то есть, вариант (1), “java” как JIT-компилятора, то есть, вариант (2) либо он каким-то образом связан с AOT-компиляцией, то есть, вариант (3)? В этой статье я собираюсь найти верные ответы на все эти вопросы.

Первый ответ, который хочется дать – скорее всего, здесь имеет место только (1). Я говорю «скорее всего», так как не знаю, не установлена ли здесь какая-либо переменная окружения, которая бы изменяла опции JVM, заданные по умолчанию. Если ничего лишнего не установлено, и именно так “java” работает по умолчанию, то здесь мы 100% наблюдаем именно вариант (1), то есть, код полностью интерпретируемый. Я в этом уверен, так как:

(Ради удобочитаемости я буду писать каждую опцию с новой строки)

В данном случае должно быть совершенно понятно, что мы исключаем все функции (последняя *) во всех классах из всех пакетов, которые начинаются с java, jdk и sun (имена пакетов разделяются символом /, и можно использовать *). Команда quiet приказывает JVM не писать ничего об исключенных классах, поэтому в консоль будут выведены лишь те, которые сейчас скомпилируются. Итак, я запускаю:

Посмотрим, к чему же мы пришли. Теперь у нас есть простой код, где мы запускаем нашу функцию 10 раз. Ранее я упоминал, что эта функция интерпретируется, а не компилируется, поскольку так указано в документации, а теперь мы видим ее в логах (при этом, не видим в логах компиляции, и это означает, что JIT-компиляции она не подвергается). Отлично, вы только что видели инструмент “java” в действии, интерпретирующий и только интерпретирующий нашу функцию в 100% случаев. Итак, можем поставить галочку, что с вариантом (1) разобрались. Переходим к (2), динамической компиляции.

Вот вывод (напоминаю, у меня пропущены строки, касающиеся java.lang.invoke.MethodHandle ):

Приветствуем (hello!) динамически скомпилированную функцию Test.f или Test:: сразу после вызова номер 5, ведь я задал для CompileThreshold значение 5. JVM интерпретирует функцию 5 раз, затем компилирует ее и, наконец, запускает скомпилированную версию. Поскольку функция скомпилирована, она должна выполняться быстрее, но здесь мы этого проверить не можем, так как эта функция ничего не делает. Думаю, это хорошая тема для отдельного поста.

Вывод получится длинным, и там будут строки вроде:

Как видите, соответствующие функции компилируются в нативный машинный код.

Наконец, обсудим вариант 3, AOT. Компиляция перед выполнением, AOT, была недоступна в Java до версии 9.

В JDK 9 появился новый инструмент, jaotc – как понятно из названия, это AOT-компилятор для Java. Идея такова: запускаем компилятор Java “javac”, потом AOT-компилятор для Java “jaotc”, после чего запускаем JVM “java” как обычно. JVM в обычном порядке выполняет интерпретацию и JIT-компиляцию. Однако, если в функции есть AOT-скомпилированный код, она прямо его и использует, а не прибегает к интерпретации или JIT-компиляции. Поясню: вы не обязаны запускать AOT-компилятор, он опционален, а если вы им и воспользуетесь – то можете скомпилировать им до выполнения лишь те классы, которые хотите.

В нашем выводе, среди прочего, будет:

Как и в случае с соответствующей опцией “java”, в данном случае опцию можно сопровождать файлом, для этого существует опция –compile-commands к jaotc. В JEP 295 приводятся соответствующие примеры, которые я не буду здесь показывать.

Можно задать несколько AOT-библиотек, разделенных запятыми.

Перед выводом программы Test эта команда показывает следующее:

Как и планировалось, загружается библиотека AOT, и используются AOT-скомпилированные функции.

Если вам интересно, можете запустить следующую команду и проверить, происходит ли JIT-компиляция.

Как и предполагалось, JIT-компиляции не происходит, поскольку методы в классе Test скомпилированы до выполнения и предоставлены в виде библиотеки.

Возможен вопрос: если мы предоставляем нативный код функций, то как JVM определяет, не является ли нативный код устаревшим/несвежим? В качестве заключительного примера давайте модифицируем функцию f и зададим для a значение 6.

Я сделал этого лишь для того, чтобы изменить файл класса. Теперь мы заставим “javac” скомпилировать и запустить ту же команду, что и выше.

Как видите, я не запускал “jaotc” после “javac”, поэтому код из библиотеки AOT сейчас старый и некорректный, а у функции f значение a=5.

Вывод команды “java” выше демонстрирует:

Это означает, что функции в данном случае были динамически скомпилированы, поэтому код, полученный в результате AOT-компиляции, не использовался. Итак, обнаружено изменение в файле класса. Когда компиляция выполняется при помощи “javac”, ее отпечаток заносится в класс, а отпечаток класса также хранится в библиотеке AOT. Поскольку новый отпечаток класса отличается от того, что сохранен в библиотеке AOT, нативный код, скомпилированный заранее (AOT) не использовался. Вот и все, что я хотел рассказать о последнем варианте компиляции, до выполнения.

В этой статье я попытался объяснить и проиллюстрировать на простых реалистичных примерах, как JVM выполняет код Java: интерпретируя его, компилируя динамически (JIT) или заранее (AOT) – причем, последняя возможность появилась только в JDK 9. Надеюсь, вы узнали что-то новое.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *