кодировка что такое в информатике
Кодирование для чайников, ч.1
Не являясь специалистом в обозначенной области я, тем не менее, прочитал много специализированной литературы для знакомства с предметом и прорываясь через тернии к звёздам набил, на начальных этапах, немало шишек. При всём изобилии информации мне не удалось найти простые статьи о кодировании как таковом, вне рамок специальной литературы (так сказать без формул и с картинками).
Статья, в первой части, является ликбезом по кодированию как таковому с примерами манипуляций с битовыми кодами, а во второй я бы хотел затронуть простейшие способы кодирования изображений.
0. Начало
Давайте рассмотрим некоторые более подробно.
1.1 Речь, мимика, жесты
1.2 Чередующиеся сигналы
В примитивном виде кодирование чередующимися сигналами используется человечеством очень давно. В предыдущем разделе мы сказали про дым и огонь. Если между наблюдателем и источником огня ставить и убирать препятствие, то наблюдателю будет казаться, что он видит чередующиеся сигналы «включено/выключено». Меняя частоту таких включений мы можем выработать последовательность кодов, которая будет однозначно трактоваться принимающей стороной.
1.3 Контекст
2. Кодирование текста
Текст в компьютере является частью 256 символов, для каждого отводится один байт и в качестве кода могут быть использованы значения от 0 до 255. Так как данные в ПК представлены в двоичной системе счисления, то один байт (в значении ноль) равен записи 00000000, а 255 как 11111111. Чтение такого представления числа происходит справа налево, то есть один будет записано как 00000001.
Итак, символов английского алфавита 26 для верхнего и 26 для нижнего регистра, 10 цифр. Так же есть знаки препинания и другие символы, но для экспериментов мы будем использовать только прописные буквы (верхний регистр) и пробел.
Тестовая фраза «ЕХАЛ ГРЕКА ЧЕРЕЗ РЕКУ ВИДИТ ГРЕКА В РЕЧКЕ РАК СУНУЛ ГРЕКА РУКУ В РЕКУ РАК ЗА РУКУ ГРЕКУ ЦАП».
2.1 Блочное кодирование
Информация в ПК уже представлена в виде блоков по 8 бит, но мы, зная контекст, попробуем представить её в виде блоков меньшего размера. Для этого нам нужно собрать информацию о представленных символах и, на будущее, сразу подсчитаем частоту использования каждого символа:
Что такое кодировки?
Компьютеры постоянно работают с текстами: это ленты новостных сайтов, фондовые биржи, сообщения в социальных сетях и мессенджерах, банковские приложения и многое другое. Сегодня мы не можем представить жизнь без передачи информации. Но так было не всегда. Компьютеры научились работать с текстом благодаря появлению кодировок. Кодировки прошли большой путь от таблиц символов, созданных отдельно для каждого компьютера, до единой кодировки, принятой во всём мире.
Сейчас Unicode — это основной стандарт кодирования символов, включающий в себя знаки почти всех письменных языков мира. Unicode применяется везде, где есть текст. Информация на страницах в социальных сетях, записи в базах данных, компьютерные программы и мобильные приложения — всё это работает с использованием Unicode.
В этом гайде мы рассмотрим, как появился Unicode и какие проблемы он решает. Узнаем, как хранилась и передавалась информация до введения единого стандарта кодирования символов, а также рассмотрим примеры кодировок, основанных на Unicode.
Предпосылки появления кодировок
Исторически компьютер создавался как машина для ускорения и автоматизации вычислений. Само слово computer с английского можно перевести как вычислитель, а в 20 веке в СССР, до распространения термина компьютер, использовалась аббревиатура ЭВМ — электронно вычислительная машина.
Всё, чем компьютеры оперировали — числа. Основным заказчиком и драйвером появления первых моделей были оборонные предприятия. На компьютерах проводили расчёты параметров полёта баллистических ракет, самолётов, спутников. В 1950-е годы вычислительные мощности компьютеров стали использовать для:
Компьютеры и числа
Цели, для которых разрабатывались компьютеры, привели к появлению архитектуры, предназначенной для работы с числами. Они хранятся в компьютере следующим образом:
В конце 1950-х годов происходит замена ламп накаливания на полупроводниковые элементы (транзисторы и диоды). Внедрение новой технологии позволило уменьшить размеры компьютеров, увеличить скорость работы и надёжность вычислений, а также повлияло на конечную стоимость. Если первые компьютеры были дорогостоящими штучными проектами, которые могли себе позволить только государства или крупные компании, то с применением полупроводников начали появляться серийные компьютеры, пусть даже и не персональные.
Компьютеры и символы
Постепенно компьютеры начинают применяться для решения не только вычислительных или математических задач. Возникает необходимость обработки текстовой информации, но с буквами и другими символами ситуация обстоит сложнее, чем с числами. Символы — это визуальный объект. Даже одна и та же буква «а» может быть представлена двумя различными символами «а» и «А» в зависимости от регистра.
Также число «один» можно представить в виде различных символов. Это может быть арабская цифра 1 или римская цифра I. Значение числа не меняется, но символы используются разные.
Компьютеры создавались для работы с числами, они не могут хранить символы. При вводе информации в компьютер символы преобразуются в числа и хранятся в памяти компьютера как обычные числа, а при выводе информации происходит обратное преобразование из чисел в символы.
Правила преобразования символов и чисел хранились в виде таблицы символов (англ. charset). В соответствии с такой таблицей для каждого компьютера конструировали и своё уникальное устройство ввода/вывода информации (например, клавиатура и принтер).
Распространение компьютеров
В начале 1960-х годов компьютеры были несовместимы друг с другом даже в рамках одной компании-производителя. Например, в компании IBM насчитывалось около 20 конструкторских бюро, и каждое разрабатывало свою собственную модель. Такие компьютеры не были универсальными, они создавались для решения конкретных задач. Для каждой решаемой задачи формировалась необходимая таблица символов, и проектировались устройства ввода/вывода информации.
В этот период начинают формироваться сети, соединяющие в себе несколько компьютеров. Так, в 1958 году создали систему SAGE (Semi-Automatic Ground Environment), объединившую радарные станций США и Канады в первую крупномасштабную компьютерную сеть. При этом, чтобы результаты вычислений одних компьютеров можно было использовать на других компьютерах сети, они должны были обладать одинаковыми таблицами символов.
В 1962 году компания IBM формирует два главных принципа для развития собственной линейки компьютеров:
Так в 1965 году появились компьютеры IBM System/360. Это была линейка из шести моделей, состоящих из совместимых модулей. Модели различались по производительности и стоимости, что позволило заказчикам гибко подходить к выбору компьютера. Модульность систем привела к появлению новой отрасли — производству совместимых с System/360 вычислительных модулей. У компаний не было необходимости производить компьютер целиком, они могли выходить на рынок с отдельными совместимыми модулями. Всё это привело к ещё большему распространению компьютеров.
ASCII как первый стандарт кодирования информации
Телетайп и терминал
Параллельно с этим развивались телетайпы. Телетайп — это система передачи текстовой информации на расстоянии. Два принтера и две клавиатуры (на самом деле электромеханические печатные машинки) попарно соединялись друг с другом проводами. Текст, набранный на клавиатуре у первого пользователя, печатается на принтере у второго пользователя и наоборот. Таким образом, например, была организована «горячая линия» между президентом США и руководством СССР вплоть до начала 1970-х годов.
Телетайпы также преобразуют текстовую информацию в некоторые сигналы, которые передаются по проводам. При этом не всегда используется бинарный код, например, в азбуке Морзе используются 3 символа — точка, тире и пауза. Для телетайпов необходимы таблицы символов, соответствие в которых строится между символами и сигналами в проводах. При этом для каждого телетайпа (пары, соединённых телетайпов) таблицы символов могли быть свои, исходя из задач, которые они решали. Отличаться, например, мог язык, а значит и сам набор символов, который отправлялся с помощью устройства. Для оптимизации работы телетайпа самые популярные (часто встречающиеся) символы кодировались наиболее коротким набором сигналов, а значит и в рамках одного языка, набор символов мог быть разным.
На основе телетайпов разработали терминалы доступа к компьютерам. Такой телетайп отправлял сообщения не второму пользователю, а информация вводилась на некоторый удалённый компьютер, который после обработки указанных команд, возвращал результат в виде ответного сообщения. Это нововведение позволило использовать тогда ещё очень дорогие вычислительные мощности компьютеров, не имея физического доступа к самому компьютеру. Например, компьютер мог размещаться в отдельном вычислительном центре корпорации или института, а сотрудники из других филиалов или городов получали доступ к вычислительным мощностями компьютера посредством установленных у них терминалов.
ASCII
Повсеместное распространение компьютеров и средств обмена текстовой информацией потребовало разработки единого стандарта кодирования для передачи и хранения информации. Такой стандарт разработали в США в 1963 году. Таблицу из 128 символов назвали ASCII — American standard code for information interchange (Американский стандарт кодов для обмена информацией).
Первые 32 символа в ASCII являются управляющими. Они использовались для того, чтобы, например, управлять печатающим устройством телетайпа и получать некоторые составные символы. Например:
Введение управляющих символов позволяло получать новые символы как комбинацию существующих, не вводя дополнительные таблицы символов.
Однако введение стандарта ASCII решило вопрос только в англоговорящих странах. В странах с другой письменностью, например, с кириллической в СССР, проблема оставалась.
Кодировки для других языков
В течение более чем 20 лет вопрос решали введением собственных локальных стандартов, например, в СССР на основе таблицы ASCII разработали собственные варианты кодировок КОИ 7 и КОИ 8, где 7 и 8 указывают на количество бит, необходимых для кодирования одного символа, а КОИ расшифровывается как Коды Обмена Информацией.
С дальнейшим развитием систем начали использовать восьмибитные кодировки. Это позволило использовать наборы, содержащие по 256 символов. Достаточно распространён был подход, при котором первые 128 символов брали из стандарта ASCII, а оставшиеся 128 дополнялись собственными символами. Такое решение, в частности, было использовано в кодировке KOI 8.
Однако единым стандартом указанные кодировки так и не стали. Например, в MS-DOS для русских локализаций использовалась кодировка cp866, а далее в среде MS Windows стали использоваться кодировки cp1251. Для греческого языка применялись кодировки cp851 и cp1253. В результате документы, подготовленные с использованием старой кодировки, становились нечитаемыми на новых.
Свои кодировки необходимы и для других стран с уникальным набором символов. Это приводило к путанице и сложностям в обмене информацией. Ниже приведён пример текста, который написали в кодировке KOI8-R, а читают в cp851.
Обе кодировки основаны на стандарте ASCII, поэтому знаки препинания и буквы английского алфавита в обеих кодировках выглядят одинаково. Кириллический текст при этом становится совершенно нечитаемым.
При этом компьютерная память была дорогой, а связь между компьютерами медленной. Поэтому выгоднее было использовать кодировки, в которых размер в битах каждого символа был небольшим. Таблица символов состоит из 256 символов. Это значит, что нам достаточно 8 бит для кодирования любого из них (2^8 = 256).
Переход к Unicode
Развитие интернета, увеличение количества компьютеров и удешевление памяти привели к тому, что проблемы, которые доставляла путаница в кодировках, стали перевешивать некоторую экономию памяти. Особенно ярко это проявлялось в интернете, когда текст написанный на одном компьютере должен был корректно отображаться на многих других устройствах. Это доставляло огромные проблемы как программистам, которые должны были решать какую кодировку использовать, так и конечным пользователям, которые не могли получить доступ к интересующим их текстам.
В результате в октябре 1991 года появилась первая версия одной общей таблицы символов, названной Unicode. Она включала в себя на тот момент 7161 различный символ из 24 письменностей мира.
В Unicode постепенно добавлялись новые языки и символы. Например, в версию 1.0.1 в середине 1992 года добавили более 20 000 идеограмм китайского, японского и корейского языков. В актуальной на текущий момент версии содержится уже более 143 000 символов.
Кодировки на основе Unicode
Unicode можно себе представить как огромную таблицу символов. В памяти компьютера записываются не сами символы, а номера из таблицы. Записывать их можно разными способами. Именно для этого на основе Unicode разработаны несколько кодировок, которые отличаются способом записи номера символа Unicode в виде набора байт. Они называются UTF — Unicode Transformation Format. Есть кодировки постоянной длины, например, UTF-32, в которой номер любого символа из таблицы Unicode занимает ровно 4 байта. Однако наибольшую популярность получила UTF-8 — кодировка с переменным числом байт. Она позволяет кодировать символы так, что наиболее распространённые символы занимают 1-2 байта, и только редко встречающиеся символы могут использовать по 4 байта. Например, все символы таблицы ASCII занимают ровно по одному байту, поэтому текст, написанный на английском языке с использованием кодировки UTF-8, будет занимать столько же места, как и текст, написанный с использованием таблицы символов ASCII.
На сегодняшний день Unicode является основной кодировкой, которую используют в работе все, кто связан с компьютерами и текстами. Unicode позволяет использовать сотни тысяч различных символов и отображать их одинаково на всех устройствах от мобильных телефонов до компьютеров на космических станциях.
Кодирование информации
Определение: |
Кодирование информации (англ. information coding) — отображение данных на кодовые слова. |
Обычно в процессе кодирования информация преобразуется из формы, удобной для непосредственного использования, в форму, удобную для передачи, хранения или автоматической обработки. В более узком смысле кодированием информации называют представление информации в виде кода. Средством кодирования служит таблица соответствия знаковых систем, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.
Содержание
Код [ править ]
Виды кодов [ править ]
Все вышеперечисленные коды являются однозначно декодируемыми — для такого кода любое слово, составленное из кодовых слов, можно декодировать только единственным способом.
Примеры кодов [ править ]
Однозначно декодируемый код [ править ]
Определение: |
Однозначно декодируемый код (англ. uniquely decodable code) — код, в котором любое слово составленное из кодовых слов можно декодировать только единственным способом. |
Пусть есть код заданный следующей кодовой таблицей:
[math]a_1 \rightarrow b_1[/math]
[math]a_2 \rightarrow b_2[/math]
[math]a_k \rightarrow b_k[/math]
Код является однозначно декодируемым, только тогда, когда для любых строк, составленных из кодовых слов, вида:
Всегда выполняются равенства:
Заметим, что если среди кодовых слов будут одинаковые, то однозначно декодировать этот код мы уже не сможем.
Префиксный код [ править ]
Определение: |
Префиксный код (англ. prefix code) — код, в котором никакое кодовое слово не является префиксом какого-то другого кодового слова. |
Предпочтение префиксным кодам отдается из-за того, что они упрощают декодирование. Поскольку никакое кодовое слово не выступает в роли префикса другого, кодовое слово, с которого начинается файл, определяется однозначно, как и все последующие кодовые слова.
Пример кодирования [ править ]
Закодируем строку [math]abacaba[/math] :
Такой код можно однозначно разбить на слова:
[math]00\ 01\ 00\ 1\ 00\ 01\ 00[/math]
Преимущества префиксных кодов [ править ]
Недостатки префиксных кодов [ править ]
Пример неудачного декодирования [ править ]
Предположим, что последовательность [math]abacaba[/math] из примера передалась неверно и стала:
[math]c^<**>(abacaba) = 0001001\ 1\ 00100[/math]
Разобьем ее согласно словарю:
[math] 00\ 01\ 00\ 1\ 1\ 00\ 1\ 00[/math]
[math]a\quad b\quad a\ c\ c\quad a\ c\ a[/math]
Полученная строка совпадает только в битах, которые находились до ошибочного, поэтому декодирование неравномерного кода, содержащего ошибки, может дать абсолютно неверные результаты.
Не префиксный однозначно декодируемый код [ править ]
Как уже было сказано, префиксный код всегда однозначно декодируем. Обратное в общем случае неверно:
Мы можем ее однозначно декодировать, так как знаем, что слева от двойки и справа от тройки всегда стоит единица.
После декодирования получаем: [math]abbca[/math]