код содержащий в кодовых комбинациях одинаковое число символов
Кроссворд Информация и информационные процессы (7 класс)
Кроссворд Информация и информационные процессы — интерактивная (онлайн) и печатная версия для использования на уроках информатики в 7 классе.
Кроссворд взят из рабочей тетради Информатика 7 класс ФГОС (задание №75). Кроссворд можно использовать на уроке во время актуализации и проверки усвоения темы «Информация и информационные процессы».
Кроссворд Информация и информационные процессы
По горизонтали:
4. Информация обладает этим свойством, если ее достаточно для понимания ситуации и принятия решения. 7. Количество символов, образующих некоторый алфавит. 12. Заменитель объекта, позволяющий передающему информацию вызвать в сознании принимающего информацию образ объекта. 13. Информация обладает этим свойством, если она важна, существенна для настоящего времени. 16. Код, содержащий в кодовых комбинациях разное число символов. 18. Информация обладает этим свойством, если она позволяет получателю решать стоящие перед ним задачи. 19. Сигнал, принимающий конечное число значений. 20. Конечный набор отличных друг от друга символов (знаков), используемых для представления информации. 21. Для человека это содержание сигналов, которые он получает из различных источников.
По вертикали:
1. Алфавит, содержащий два символа. 2. Языки, используемые для общения людей. 3. Величина, равная восьми битам. 5. Целенаправленный процесс изменения содержания или формы представления информации. 6. Языки, применяемые специалистами в профессиональной деятельности. 8. Процесс преобразования информации из непрерывной формы представления в дискретную. 9. Код, содержащий в кодовых комбинациях одинаковое число символов. 10. Специальная программа, помогающая пользователю перемещаться по Всемирной паутине. 11. Минимальная единица измерения информации. 14. Характеристика двоичного кодирования, отражающая то, что с помощью двоичного кода может быть представлена любая информация на естественных и формальных языках, а также изображения и звуки. 15. Изменение физической величины, используемое для передачи данных. 17. Сигнал, принимающий бесконечное множество значений из некоторого диапазона.
Скачать версию для печати (129Кб, pdf) — Кроссворд Информация и информационные процессы
Ответы на кроссворд Информация и информационные процессы
По горизонтали:
4. Полнота.
7. Мощность.
12. Знак.
13. Актуальность.
16. Неравномерные.
18. Понятность.
19. Дискретный.
20. Алфавит.
21. Информация.
По вертикали:
1. Двоичный.
2. Естественные.
3. Байт.
5. Обработка.
6. Формальные.
8. Дискретизация.
9. Равномерный.
10. Браузер.
11. Бит.
14. Универсальность.
15. Сигнал.
17. Непрерывный.
Информатика. 7 класс
Конспект урока
Кодирование информации. Двоичный код
Перечень вопросов, рассматриваемых в теме:
Дискретизация информации – процесс преобразования информации из непрерывной формы представления в дискретную. Чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка.
Алфавит языка – конечный набор отличных друг от друга символов, используемых для представления информации. Мощность алфавита – это количество входящих в него символов.
Алфавит, содержащий два символа, называется двоичным алфавитом. Представление информации с помощью двоичного алфавита называют двоичным кодированием. Двоичное кодирование универсально, так как с его помощью может быть представлена любая информация.
1. Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.
Теоретический материал для самостоятельного изучения
Для решения своих задач человеку часто приходится преобразовывать имеющуюся информацию из одной формы представления в другую. Например, при чтении вслух происходит преобразование информации из дискретной (текстовой) формы в непрерывную (звук). Во время диктанта на уроке русского языка, наоборот, происходит преобразование информации из непрерывной формы (голос учителя) в дискретную (записи учеников).
Информация, представленная в дискретной форме, значительно проще для передачи, хранения или автоматической обработки. Поэтому в компьютерной технике большое внимание уделяется методам преобразования информации из непрерывной формы в дискретную.
Дискретизация информации – процесс преобразования информации из непрерывной формы представления в дискретную.
Рассмотрим суть процесса дискретизации информации на примере.
На метеорологических станциях имеются самопишущие приборы для непрерывной записи атмосферного давления. Результатом их работы являются барограммы – кривые, показывающие, как изменялось давление в течение длительных промежутков времени. Одна из таких кривых, вычерченная прибором в течение семи часов проведения наблюдений, показана на рисунке 1.
На основании полученной информации можно построить таблицу, содержащую показания прибора в начале измерений и на конец каждого часа наблюдений.
Полученная таблица даёт не совсем полную картину того, как изменялось давление за время наблюдений: например, не указано самое большое значение давления, имевшее место в течение четвёртого часа наблюдений. Но если занести в таблицу значения давления, наблюдаемые каждые полчаса или 15 минут, то новая таблица будет давать более полное представление о том, как изменялось давление.
Таким образом, информацию, представленную в непрерывной форме (барограмму, кривую), мы с некоторой потерей точности преобразовали в дискретную форму (таблицу).
В дальнейшем вы познакомитесь со способами дискретного представления звуковой и графической информации.
В общем случае, чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка. Таких языков тысячи. Каждый язык имеет свой алфавит.
Алфавит – конечный набор отличных друг от друга символов (знаков), используемых для представления информации. Мощность алфавита – это количество входящих в него символов (знаков).
Алфавит, содержащий два символа, называется двоичным алфавитом (рис. 3). Представление информации с помощью двоичного алфавита называют двоичным кодированием. Закодировав таким способом информацию, мы получим её двоичный код.
Рассмотрим в качестве символов двоичного алфавита цифры 0 и 1. Покажем, что любой алфавит можно заменить двоичным алфавитом. Прежде всего, присвоим каждому символу рассматриваемого алфавита порядковый номер. Номер представим с помощью двоичного алфавита. Полученный двоичный код будем считать кодом исходного символа.
Если мощность исходного алфавита больше двух, то для кодирования символа этого алфавита потребуется не один, а несколько двоичных символов. Другими словами, порядковому номеру каждого символа исходного алфавита будет поставлена в соответствие цепочка (последовательность) из нескольких двоичных символов. Правило получения двоичных кодов для символов алфавита мощностью больше двух можно представить схемой на рисунке.
Двоичные символы (0,1) здесь берутся в заданном алфавитном порядке и размещаются слева направо. Двоичные коды (цепочки символов) читаются сверху вниз. Все цепочки (кодовые комбинации) из двух двоичных символов позволяют представить четыре различных символа произвольного алфавита:
Цепочки из трёх двоичных символов получаются дополнением двухразрядных двоичных кодов справа символом 0 или 1. В итоге кодовых комбинаций из трёх двоичных символов получается 8 – вдвое больше, чем из двух двоичных символов:
Соответственно, четырёхразрядный двоичный код позволяет получить 16 кодовых комбинаций, пятиразрядный – 32, шестиразрядный – 64 и т. д.
Длину двоичной цепочки – количество символов в двоичном коде – называют разрядностью двоичного кода.
Обратите внимание, что:
32 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 и т. д.
Здесь количество кодовых комбинаций представляет собой произведение некоторого количества одинаковых множителей, равного разрядности двоичного кода.
Если количество кодовых комбинаций обозначить буквой N, а разрядность двоичного кода – буквой i, то выявленная закономерность в общем виде будет записана так:
В математике такие произведения записывают в виде:
Запись 2 i читают так: «2 в i-й степени».
Задача. Вождь племени Мульти поручил своему министру разработать двоичный код и перевести в него всю важную информацию. Двоичный код какой разрядности потребуется, если алфавит, используемый племенем Мульти, содержит 16 символов? Выпишите все кодовые комбинации.
Чтобы выписать все кодовые комбинации из четырёх 0 и 1, воспользуемся схемой на рис. 1.13: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.
Универсальность двоичного кодирования
В начале нашей беседы вы узнали, что информация, представленная в непрерывной форме, может быть выражена с помощью символов некоторого естественного или формального языка. В свою очередь, символы произвольного алфавита могут быть преобразованы в двоичный код. Таким образом, с помощью двоичного кода может быть представлена любая информация на естественных и формальных языках, а также изображения и звуки (рис. 6). Это и означает универсальность двоичного кодирования.
Двоичные коды широко используются в компьютерной технике, требуя только двух состояний электронной схемы – «включено» (это соответствует цифре 1) и «выключено» (это соответствует цифре 0).
Простота технической реализации – главное достоинство двоичного кодирования. Недостаток двоичного кодирования – большая длина получаемого кода.
Равномерные и неравномерные коды
Различают равномерные и неравномерные коды. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные – разное.
Выше мы рассмотрели равномерные двоичные коды.
Примером неравномерного кода может служить азбука Морзе, в которой для каждой буквы и цифры определена последовательность коротких и длинных сигналов. Так, букве Е соответствует короткий сигнал («точка»), а букве Ш – четыре длинных сигнала (четыре «тире»). Неравномерное кодирование позволяет повысить скорость передачи сообщений за счёт того, что наиболее часто встречающиеся в передаваемой информации символы имеют самые короткие кодовые комбинации.
Разбор решения заданий тренировочного модуля
№1.Тип задания: ввод с клавиатуры пропущенных элементов в тексте
Переведите десятичное число 273 в двоичную систему счисления.
Воспользуемся алгоритмом перевода целых чисел из системы с основанием p в систему с основанием q:
1. Основание новой системы счисления выразить цифрами исходной системы счисления и все последующие действия производить в исходной системе счисления.
2. Последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, меньшее делителя.
3. Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.
4. Составить число в новой системе счисления, записывая его, начиная с последнего остатка.
Ответ: 27310= 100010001.
№2. Тип задания: единичный / множественный выбор.
Четыре буквы латинского алфавита закодированы кодами различной длины:
ГДЗ по информатике 10 класс учебник Босова параграф 4
1. Приведите примеры процессов обработки информации, которые чаще всего вам приходится выполнять в жизни. Для каждого примера определите исходные данные, алгоритм (правила) обработки и получаемые результаты. К каким типам обработки информации относятся эти процессы?
2. Поясните суть понятий «кодирование», «код», «кодовая таблица».
Кодирование — это обработка информации, заключающаяся в её преобразовании в некоторую форму, удобную для хранения, передачи, обработки информации в дальнейшем.
Код — это система (список) условных обозначений (кодовых слов), используемых для представления информации.
3. Светодиодная панель содержит шесть излучающих элементов, каждый из которых может светиться или красным, или жёлтым, или зелёным цветом. Сколько различных сигналов можно передать с помощью панели (все излучающие элементы должны гореть, порядок цветов имеет значение)?
Итак, у нас получилось 6-значное число в 4-ричной системе счисления.
Таких чисел (различных сигналов, то есть комбинаций) может быть (это ответ):
4. Автомобильный номер состоит из нескольких букв (количество букв одинаковое во всех номерах), за которыми следуют три цифры. При этом используются 10 цифр и только 5 букв: А, В, С, D и F. Требуется не менее 100 тысяч различных номеров. Какое наименьшее количество букв должно быть в автомобильном номере?
5. Сколько существует различных последовательностей из 6 символов четырёхбуквенного алфавита <А, В, С, D>, которые содержат не менее двух букв А (т. е. две и более буквы А)?
Предлагаю найти количество всех последовательностей и вычесть из них те, в которых содержится менее двух букв А.
Всего последовательностей: 4^6 = 4096
Последовательностей без буквы А: 3^6 = 729
С одной буквой А: 6 * 3^5 = 1458
6. Сравните равномерные и неравномерные коды. Каковы их основные достоинства и недостатки?
Равномерные коды легче декодировать, но закодированные сообщения будут содержать больше символов. Сообщения, закодированные неравномерными кодами, будут короче, чем на равномерных кодах, но необходимо будет для кодирования сообщения проверять код на условие Фано, и закодированное сообщение сложнее раскодировать. Так же невозможно сразу посчитав количество символов, по сравнению с равномерными кодами.
7. Какие коды называют префиксными? Почему они так важны? В чём суть прямого и обратного условий Фано?
Код называется префиксным, если ни одна из его комбинаций не является префиксом другой комбинации того же кода. Часть кодовой комбинации, которая дополняет префикс до самой комбинации, называется суффиксом. Префиксные коды наглядно могут быть представлены с помощью кодовых деревьев. Если ни один узел кодового дерева не является вершиной данного кода, то он обладает свойствами префикса. Узлы дерева, которые не соединяются с другими, называются конечными. Комбинации, которые им соответствуют, являются кодовыми комбинациями префиксного кода.
8. Двоичные коды для 5 букв латинского алфавита представлены в таблице:
Из четырёх сообщений, закодированных этими кодами, только одно пришло без ошибки. Найдите его:
1) 110100000100110011;
2) 111010000010010011;
3) 110100001001100111;
4) 110110000100110010.
9. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. При этом используются следующие коды: А — 1110, Б — 0, В — 10, Г — 110. Каким кодовым словом может быть закодирована буква Д? Код должен удовлетворять свойству однозначного декодирования. Если можно использовать более одного кодового слова, укажите кратчайшее из них.
10. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный троичный код, позволяющий однозначно декодировать полученную троичную последовательность. Вот этот код: А — 0, Б — 11, В — 20, Г — 21, Д — 22. Можно ли сократить для одной из букв длину кодового слова так, чтобы закодированную последовательность по-прежнему можно было декодировать однозначно? Коды остальных букв меняться не должны.
11. Для передачи закодированных сообщений используется таблица кодовых слов из четырёх букв. Причем используются только буквы А, Р и У. Сколько различных кодовых слов может быть в такой таблице, если ни в одном слове нет трёх одинаковых букв, идущих подряд?
Различных слов длины 4, состоящих из букв А, Р и У, ровно 3 4 =81.
Выпишем все запрещённые слова. Сначала выпишем все те слова, в которых три одинаковых буквы подряд идут с позиции 1 по позицию 3:
АААА, АААР, АААУ
РРРА, РРРР, РРРУ
УУУА, УУУР, УУУУ
Теперь выпишем те, в которых одинаковые буквы стоят на позиции 2-4 (без учёта тех слов, в которых все буквы одинаковые, т.к. они были выписаны ранее)
РААА, УААА
Всего получилось 15 запрещённых слов, значит, разрешённых слов 81-15=66.
12. Методом половинного деления в последовательности чисел 061 087 154 180 208 230 290 345 367 389 456 478 523 567 590 612 требуется найти число 590. Опишите процесс поиска.
Просмотр 1. Работаем со всей последовательностью. Определяем центральный элемент (он подчёркнут):
061 087 154 180 208 230 290 345 367 389 456 478 523 567 590 612
Сравниваем искомый элемент с центральным.
По результатам сравнения отбрасываем левую часть последовательности.
Просмотр 2. Работаем с правой частью последовательности. Определяем центральный элемент (он подчёркнут):
367 389 456 478 523 567 590 612
Сравниваем искомый элемент с центральным.
По результатам сравнения отбрасываем левую часть последовательности.
Просмотр 3. Работаем с правой частью последовательности. Определяем центральный элемент (он подчёркнут):
Сравниваем искомый элемент с центральным.
Центральный элемент совпадает с искомым. Поиск завершён.
13. В Международном конкурсе по информатике «Бобёр» школьникам была предложена задача «Склад», подготовленная специалистами из Японии. Вот её условие.
Плотник в Бобровой Деревне использует 31 склад, пронумерованный от 1 до 31. Однажды он забыл, сколько складов уже заполнил, но помнит, что заполнял их в порядке возрастания номеров.
Чтобы уменьшить количество открывания дверей, он действует следующим образом:
Сначала открывает склад со средним номером — склад № 16. Затем:
• если склад № 16 пуст, он решает искать первый незаполненный склад в промежутке от № 1 до № 15, открывает опять средний склад — склад № 8 — и повторяет процедуру;
• если склад № 16 заполнен, то нужный склад он ищет между № 17 и № 31, открывает средний склад — склад № 24 — и повторяет процедуру.
После всех действий плотник обнаружил, что заполнены были склады от № 1 до № 15 включительно. Сколько дверей ему пришлось открыть?
Решите эту задачу. Какой из рассмотренных нами методов поиска был использован героем этой задачи?
Двоичный поиск эффективно определяет положение искомого элемента (или его отсутствие) в упорядоченном наборе.
Это один из базовых и важных алгоритмов.
Если склады от №1 до №15 заполнены, то:
— когда плотник открывает склад №16, он оказывается пуст (1-ая открытая дверь);
— тогда плотник решает искать между №1 и №15, открывает склад №8, он оказывается заполнен (2-ая открытая дверь);
— теперь он ищет между №9 и №15, открывает склад №12 — он заполнен (3-ья открытая дверь);
— наконец он открывает последний склад № 15 (5-ая дверь).
Учитель информатики
Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.
§ 1.5. Двоичное кодирование
Информатика. 7 класса. Босова Л.Л. Оглавление
1.5.1. Преобразование информации из непрерывной формы в дискретную
Для решения своих задач человеку часто приходится преобразовывать имеющуюся информацию из одной формы представления в другую. Например, при чтении вслух происходит преобразование информации из дискретной (текстовой) формы в непрерывную (звук). Во время диктанта на уроке русского языка, наоборот, происходит преобразование информации из непрерывной формы (голос учителя) в дискретную (записи учеников).
Информация, представленная в дискретной форме, значительно проще для передачи, хранения или автоматической обработки. Поэтому в компьютерной технике большое внимание уделяется методам преобразования информации из непрерывной формы в дискретную.
Дискретизация информации — процесс преобразования информации из непрерывной формы представления в дискретную.
Рассмотрим суть процесса дискретизации информации на примере.
На метеорологических станциях имеются самопишущие приборы для непрерывной записи атмосферного давления. Результатом их работы являются барограммы — кривые, показывающие, как изменялось давление в течение длительных промежутков времени. Одна из таких кривых, вычерченная прибором в течение семи часов проведения наблюдений, показана на рис. 1.9.
На основании полученной информации можно построить таблицу, содержащую показания прибора в начале измерений и на конец каждого часа наблюдений (рис. 1.10).
Полученная таблица даёт не совсем полную картину того, как изменялось давление за время наблюдений: например, не указано самое большое значение давления, имевшее место в течение четвёртого часа наблюдений. Но если занести в таблицу значения давления, наблюдаемые каждые полчаса или 15 минут, то новая таблица будет давать более полное представление о том, как изменялось давление.
Таким образом, информацию, представленную в непрерывной форме (барограмму, кривую), мы с некоторой потерей точности преобразовали в дискретную форму (таблицу).
В дальнейшем вы познакомитесь со способами дискретного представления звуковой и графической информации.
1.5.2. Двоичное кодирование
В общем случае, чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка. Таких языков тысячи. Каждый язык имеет свой алфавит.
Алфавит — конечный набор отличных друг от друга символов (знаков), используемых для представления информации. Мощность алфавита — это количество входящих в него символов (знаков).
Алфавит, содержащий два символа, называется двоичным алфавитом (рис. 1.11). Представление информации с помощью двоичного алфавита называют двоичным кодированием. Закодировав таким способом информацию, мы получим её двоичный код.
Рассмотрим в качестве символов двоичного алфавита цифры 0 и 1.
Покажем, что любой алфавит можно заменить двоичным алфавитом. Прежде всего, присвоим каждому символу рассматриваемого алфавита порядковый номер. Номер представим с помощью двоичного алфавита. Полученный двоичный код будем считать кодом исходного символа (рис. 1.12).
Если мощность исходного алфавита больше двух, то для кодирования символа этого алфавита потребуется не один, а несколько двоичных символов. Другими словами, порядковому номеру каждого символа исходного алфавита будет поставлена в соответствие цепочка (последовательность) из нескольких двоичных символов.
Правило получения двоичных кодов для символов алфавита мощностью больше двух можно представить схемой на рис. 1.13.
Двоичные символы (0,1) здесь берутся в заданном алфавитном порядке и размещаются слева направо. Двоичные коды (цепочки символов) читаются сверху вниз. Все цепочки (кодовые комбинации) из двух двоичных символов позволяют представить четыре различных символа произвольного алфавита:
Цепочки из трёх двоичных символов получаются дополнением двухразрядных двоичных кодов справа символом 0 или 1. В итоге кодовых комбинаций из трёх двоичных символов получается 8 — вдвое больше, чем из двух двоичных символов:
Соответственно, четырёхразрядный двоичный код позволяет получить 16 кодовых комбинаций, пятиразрядный — 32, шестиразрядный — 64 и т. д.
Длину двоичной цепочки — количество символов в двоичном коде — называют разрядностью двоичного кода.
Обратите внимание, что:
Здесь количество кодовых комбинаций представляет собой произведение некоторого количества одинаковых множителей, равного разрядности двоичного кода.
Если количество кодовых комбинаций обозначить буквой N, а разрядность двоичного кода — буквой i, то выявленная закономерность в общем виде будет записана так:
В математике такие произведения записывают в виде:
Запись 2 i читают так: «2 в i-й степени».
Задача. Вождь племени Мульти поручил своему министру разработать двоичный код и перевести в него всю важную информацию. Двоичный код какой разрядности потребуется, если алфавит, используемый племенем Мульти, содержит 16 символов? Выпишите все кодовые комбинации.
Чтобы выписать все кодовые комбинации из четырёх 0 и 1, воспользуемся схемой на рис. 1.13: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.
На сайте http://sc.edu.ru/ размещена виртуальная лаборатория «Цифровые весы» (135009). С её помощью вы можете самостоятельно открыть метод разностей — ещё один способ получения двоичного кода целых десятичных чисел.
1.5.3. Универсальность двоичного кодирования
В начале этого параграфа вы узнали, что информация, представленная в непрерывной форме, может быть выражена с помощью символов некоторого естественного или формального языка. В свою очередь, символы произвольного алфавита могут быть преобразованы в двоичный код. Таким образом, с помощью двоичного кода может быть представлена любая информация на естественных и формальных языках, а также изображения и звуки (рис. 1.14). Это и означает универсальность двоичного кодирования.
Двоичные коды широко используются в компьютерной технике, требуя только двух состояний электронной схемы — «включено» (это соответствует цифре 1) и «выключено» (это соответствует цифре 0).
Простота технической реализации — главное достоинство двоичного кодирования. Недостаток двоичного кодирования — большая длина получаемого кода.
1.5.4. Равномерные и неравномерные коды
Различают равномерные и неравномерные коды. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные — разное.
Выше мы рассмотрели равномерные двоичные коды.
Примером неравномерного кода может служить азбука Морзе, в которой для каждой буквы и цифры определена последовательность коротких и длинных сигналов. Так, букве Е соответствует короткий сигнал («точка»), а букве Ш — четыре длинных сигнала (четыре «тире»). Неравномерное кодирование позволяет повысить скорость передачи сообщений за счёт того, что наиболее часто встречающиеся в передаваемой информации символы имеют самые короткие кодовые комбинации.
Самое главное.
Дискретизация информации — процесс преобразования информации из непрерывной формы представления в дискретную. Чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка.
Алфавит языка — конечный набор отличных друг от друга символов, используемых для представления информации. Мощность алфавита — это количество входящих в него символов.
Алфавит, содержащий два символа, называется двоичным алфавитом. Представление информации с помощью двоичного алфавита называют двоичным кодированием. Двоичное кодирование универсально, так как с его помощью может быть представлена любая информация.
Вопросы и задания.
1.Ознакомьтесь с материалом презентации к параграфу, содержащейся в электронном приложении к учебнику. Что вы можете сказать о формах представления информации в презентации и в учебнике? Какими слайдами вы могли бы дополнить презентацию?