код для часов на ардуино

Урок 18. Подключение RTC часы реального времени с кнопками

код для часов на ардуино

В этом уроке мы научимся не только выводить, но и устанавливать время RTC модуля при помощи трёх кнопок.

Нам понадобится:

Для реализации проекта нам необходимо установить библиотеки:

Видео

Схема подключения:

Подключение модулей RTC и LCD, данного урока, осуществляется к аппаратным выводам SDA, и SCL.

RTC модуль Trema на базе чипа DS1307 / LCD дисплей на базе чипа LCD1602Arduino Uno
GNDGND
Vcc+5V
SDA (Serial DAta)A4
SCL (Serial CLock)A5

подключение кнопок: кнопка «SET» к выводу 2, кнопка «UP» к выводу 3 и копка «DOWN» к выводу 4.

код для часов на ардуино

Код программы:

При подключении библиотеки «iarduino_RTC» нужно указать, с каким модулем ей работать, в данном случае это модуль Trema на базе чипа DS1307:

Аналогичный алгоритм действий при подключении библиотеки «LiquidCrystal_I2C» для работы с LCD дисплеем LCD1602 IIC/I2C(синий) или LCD1602 IIC/I2C(зелёный) :

В библиотеке «iarduino_RTC» доступны 9 числовых переменных: seconds, minutes, hours, Hours, midday, day, weekday, month и year, значения которых обновляются после каждого вызова функции gettime(). Эти переменные мы будим использовать для изменения даты и времени.

Алгоритм работы кнопок следующий:

Источник

Самые простые цифровые часы на Ардуино Уно

Самые простые часы на основе Arduino и LCD (ЖК дисплей) из тех что мы когда-то делали. Нам потребуются только Arduino UNO, 16×2 ЖК-дисплей и две кнопки. Никаких резисторов, никаких потенциометров.

Комплектующие

Начинаем с деталей, которые нам понадобятся для проекта цифровых часов на Ардуино Уно:

Что за идея

Ранее мы делали один сложный проект с цифровыми часами, о котором мы расскажем в следующих уроках, и нашли в процессе несколько проблем. После этого мы решили поделиться этой проблемой со всеми. Основная проблема в том как оценивается длительность секунды.

код для часов на ардуино

На скриншоте выше видно, что код реализован таким образом, что теперь инкремент s будет выполняться каждую 1 секунду и не больше, в зависимости от времени выполнения цикла loop<>.

В связи с этим резисторы и потенциометры мы полностью удалили.

Кнопки настройки времени вы можете использовать встроенные в микросхему ATmega328P.

код для часов на ардуино

pinMode(hs, INPUT_PULLUP) избегает использования внешнего Pullup. Подробнее о INPUT_PULLUP читайте в нашем Справочнике программиста Ардуино.

Избегайте потенциометра ЖК-дисплея.

Контрастность ЖК-дисплея может быть установлена с помощью сигнала PWM (Широтно-импульсная модуляция (ШИМ, англ. pulse-width modulation (PWM))) Arduino.

То же самое для подсветки, которая питается сигналом ШИМ (PWM) Arduino, поэтому её можно установить как вкл/выкл с помощью Arduino.

Схема проекта

Принципиальная схема нашего проекта выглядит таким образом:

код для часов на ардуино

Схема соединения всех комплектующих для наших цифровых часов Ардуино выглядит так:

код для часов на ардуино

Код проекта вы можете скачать или скопировать ниже. Код содержит комментарии. Обычно мы рекомендуем копировать код из скачанного файла, т.к. при копировании могут выявляться некоторые ошибки.

Также не забываем, что мы в самом начале подключаем библиотеку LiquidCrystal, которую вы можете скачать в разделе Библиотеки на нашем сайте.

Результат

код для часов на ардуино

На этом пока всё, надеемся, что ваши цифровые часы Ардуино идут точно секунда в секунду.

Источник

Урок 19. RTC часы с будильником

код для часов на ардуино

В предыдущем уроке 18, мы подключили Trema RTC часы реального времени с Trema кнопками и LCD I2C дисплеем к arduino Uno, написали скетч, для установки времени при помощи кнопок.

Теперь расширим функционал получившихся часов, добавив к ним функцию будильника. А код, который будет выполняться при срабатывании будильника выведем в отдельную функцию «Func_alarm_action()», чтоб Вы смогли легко его найти и изменить. Например, при срабатывании будильника, открывать жалюзи, включать свет или музыку, включить через реле тостер или кофе-машину и т.д.

Нам понадобится:

Для реализации проекта нам необходимо установить библиотеки:

Видео:

Схема подключения:

Подключение модулей RTC и LCD, данного урока, осуществляется к аппаратным выводам SDA, и SCL.

RTC модуль Trema на базе чипа DS1307 / LCD дисплей на базе чипа LCD1602Arduino Uno
GNDGND
Vcc+5V
SDA (Serial DAta)A4
SCL (Serial CLock)A5

Подключение кнопок: кнопка «SET» к выводу 2, кнопка «UP» к выводу 3 и копка «DOWN» к выводу 4.

Зуммер подключаем к выводу 5, а светодиод к выводу 13 (дублируя встроенный в arduino).

код для часов на ардуино

Алгоритм работы кнопок следующий:

Код программы:

Работа кнопок, вывод и установка времени, описывались в уроке 18, в этом уроке рассмотрим работу будильника:

В функции loop, после вывода информации на дисплей, добавляем проверку: не пора ли включить будильник?

Теперь всё готово для создания полного кода:

Разберемся в коде действий будильника:

Действия будильника описаны в функции Func_alarm_action().

В этой функции мы включаем светодиод, далее подаём три коротких звуковых сигнала (с частотой 2000Гц, длительностью и паузой 100мс), после чего выключаем светодиод.

Если Вам необходимо выполнить действие будильника однократно, а не каждую секунду после его срабатывания, то начните выполнение действий со сброса флага VAR_alarm_FLAG2, присвоив ему значение false.

Источник

Функции времени

код для часов на ардуино

Откуда берётся время?

Начнём с того, откуда вообще микроконтроллер знает, сколько проходит времени. Ведь у него нет часов! Для работы микроконтроллера жизненно важен так называемый тактовый генератор, или кварцевый генератор, или он же кварц. Он же oscillator, он же clock. Clock по-английски это часы. Да, но не всё так просто =) Кварц расположен рядом с МК на плате (также во многих МК есть встроенный тактовый генератор), на Ардуинах обычно стоит генератор на 16 МГц, также встречаются модели на 8 МГц. Тактовый генератор выполняет очень простую вещь: он “пинает” микроконтроллер со своей тактовой частотой, то есть 16 МГц кварц пинает МК 16 миллионов раз в секунду. Микроконтроллер, в свою очередь зная частоту кварца, может прикинуть время между пинками (16 МГц = 0.0625 микросекунды), и таким образом ориентироваться во времени. Но на деле не всё так просто, потому что принимают пинки таймера так называемые таймеры-счётчики (Timer-counter). Это физически расположенные внутри МК устройства, которые занимаются подсчётом пинков тактового генератора. И вот микроконтроллер уже может обратиться к счётчику и спросить, а сколько там натикало? И счётчик ему скажет. И вот этим мы уже можем пользоваться, для этого у Ардуино есть готовые функции времени. В Arduino на базе ATmega328 имеются три счётчика, и подсчётом времени занимается таймер под номером 0. Этим может заниматься любой другой счётчик, но работая в Arduino IDE вы сразу получаете такую настройку, т.к. создавая скетч в Arduino IDE вы автоматически работаете с библиотекой Arduino.h, где и реализованы все удобные функции.

Задержки

Простейшей с точки зрения использования функцией времени является задержка, их у нас две:

Задержки использовать очень просто:

И вот мы можем делать какое-то действие два раза в секунду. delayMicroseconds() иногда не совсем корректно работает с переменными, нужно стараться использовать константы ( const или просто число). Для создания микросекундных задержек с переменным периодом и корректной работы в циклах лучше использовать следующую конструкцию:

Функция yield()

Разработчики Arduino позаботились о том, чтобы функция delay() не просто блокировала выполнение кода, но и позволяла выполнять другой код во время этой задержки. Данный “костыль” получил название yield() и работает следующим образом: если объявить функцию

то расположенный внутри неё код будет выполняться во время работы любой задержки delay() в программе! Это решение хоть и кажется нелепым, но в то же время позволяет быстро и без описания лишних костылей и таймеров реализовать пару параллельно выполняющихся задач. Что вполне соответствует назначению Ардуино – максимально простая и быстрая разработка прототипа. Рассмотрим например такой простой пример: стандартный мигающий светодиод, но с опросом кнопки

Подробнее о том, как работать с yield() и строить программу на её основе мы рассмотрим в одном из следующих уроков о том, как написать скетч.

Функции счёта времени

Данные функции возвращают время, прошедшее с момента запуска микроконтроллера, так называемый аптайм (англ. uptime). Таких функций у нас две:

70 минут), имеет разрешение в 4 микросекунды, после переполнения сбрасывается в 0. Работает на системном таймере Timer 0

Таймер на millis()

Вы спросите, а как время со старта МК поможет нам организовать действия по времени? Очень просто, схема вот такая:

Тип 1

Реализация классического “таймера на millis()” выглядит вот так:

Тип 2

Второй вариант сброса таймера будет записан вот так:

Эта конструкция жёстко отрабатывает период, то есть не “уходит” со временем, если в коде присутствует малая задержка, потому что время следующего срабатывания всегда кратно периоду. Минусом здесь является то, что если таймер пропустит период – он “сработает” несколько раз при следующей проверке! Но из этой неприятной ситуации есть выход.

Тип 3

Можно посчитать, на сколько периодов нужно “обновить” переменную таймера. Например так:

Переполнение

Почему эта конструкция работает и не ломается? Потому что мы используем беззнаковый тип данных, который при переполнении начинает считать с нуля. Подробнее об этом читайте в уроке про вычисления. Таким образом когда миллис становится равен нулю и растёт, а мы вычитаем из него огромное число – получаем не отрицательное, а вполне корректное значение, которое является временем с предыдущего сброса таймера. Поэтому конструкция не то что продолжает работать через

50 суток, но и проходит момент “переполнения” без потери периода!

И вот так мы можем например 10 раз в секунду опросить датчик, фильтровать значения, и два раза в секунду выводить показания на дисплей. И три раза в секунду мигать лампочкой. Почему нет? Рассмотрим ещё несколько алгоритмов.

Варианты использования millis()

В классическом варианте таймера нам приходится создавать отдельную 32-х битную переменную под каждый таймер. Весьма расточительно! Давайте рассмотрим другие варианты организации периодических действий на базе счётчика аптайма millis() :

Казалось бы, очень крутой и простой алгоритм… но использовать его нельзя по целому ряду причин:

Вывод: ни в коем случае не используйте данную конструкцию.

Либо вот такой вариант, он не уходит в отличие от предыдущего (разбирали разницу в главе “Таймер на millis()”). Разница напомню в способе сброса таймера.

Пользоваться очень просто: добавьте указанный выше макрос в самое начало кода и вызывайте его как функцию

Единственное ограничение: нельзя вызывать макрос больше одного раза в одном и том же блоке кода, это приведёт к ошибке =) То есть вот так нельзя:

Если очень нужна такая конструкция – помещаем каждый вызов в свой блок кода:

Либо используем блоки кода по условиям или как отдельную функцию, которая “оборачивает” макрос:

Источник

OLED часы на arduino

На днях я решил создать часы на arduino с отображением времени, текущей даты, дня недели и температуры воздуха на OLED дисплее. Что из этого получилось смотрите на видео.

Список необходимых компонентов:

код для часов на ардуино

и загружаем первый пробный скетч для проверки работоспособности дисплея и часового модуля

после загрузки скетча у нас на дисплее отобразятся часы как на фото

код для часов на ардуино

Как видим все отображается нормально, но что бы добавить русские названия дней недели нам потребуется инициализировать русские шрифты добавив строку в скетч

и еще добавить строки которые помогут нам определить порядковый номер дня недели и отобразить название дня на русском языке.

и еще закомментируем строки

что бы при повторной загрузке скетча не устанавливать заново время. После этого день недели на нашем дисплее отобразится на русском языке.

код для часов на ардуино

теперь изменим отображения месяца, добавив в скетч строки

Почему надписи в скетче отображаются непонятным набором символов читайте в этой статье Русские и украинские шрифты для OLED I2C дисплея

Теперь наши часики будут выглядеть как на фото.

код для часов на ардуино

Для тех, кому было лень править скетч, ниже есть готовый скетч.

Ну а теперь, еще более усовершенствуем наши OLED часы и добавим к ним отображение температуры, которую мы будем считывать с датчика температуры DS18B20.

Для отображения рисунка с градусником на OLED дисплее и значка градуса выберем картинку с рисунком градусника и с помощью графического редактора сохраним ее в формате GIF с именем term.gif, и тоже самое проделаем с картинкой с значком градуса — сохраним ее как grad.gif.

картинки должны быть двухцветными (белый и черный), доступные форматы картинок png, jpg, gif

У меня картинка term.bmp имеет размеры 19×40 пикселей, а картинка grad.bmp 13×12 пикселей. Потом нам потребуется конвертировать две картинки с помощью онлайн-сервиса www.rinkydinkelectronics.com

код для часов на ардуино

выбираем наш файл изображения и жмем Make File

код для часов на ардуино

Жмем на Click here to download your file и сохраняем файл grad.c в папку с нашим скетчем, тоже самое проделываем с другим изображением. Сохраняем и закрываем скетч. При повторном открытии он будет иметь еще две вкладки с файлами изображений.

код для часов на ардуино

После этого добавим две строки в скетч, которые инициализируют наши файлы изображений

а потом отобразим наши изображения на экране OLED дисплея, добавив строки

Добавим в наш скетч на два цикла. В первом цикле у нас будет отображаться время – назовем его void watch(); Второй цикл будет считывать и отображать температуру void temp();

А в основном цикле void loop(); пропишем для ротации циклов несколько строчек кода

В цикле void temp(); пропишем кусочек кода для считывания и отображения температуры

В цикле void watch(); пропишем наш код, который отвечает за отображение времени

После заливки скетча, наши OLED часы сначала должны отображать время, а потом температуру как на видео в начале статьи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *