код длина кода перекодирование информации

Кодирование информации

Определение:
Кодирование информации (англ. information coding) — отображение данных на кодовые слова.

Обычно в процессе кодирования информация преобразуется из формы, удобной для непосредственного использования, в форму, удобную для передачи, хранения или автоматической обработки. В более узком смысле кодированием информации называют представление информации в виде кода. Средством кодирования служит таблица соответствия знаковых систем, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.

Содержание

Код [ править ]

Виды кодов [ править ]

Все вышеперечисленные коды являются однозначно декодируемыми — для такого кода любое слово, составленное из кодовых слов, можно декодировать только единственным способом.

Примеры кодов [ править ]

Однозначно декодируемый код [ править ]

Определение:
Однозначно декодируемый код (англ. uniquely decodable code) — код, в котором любое слово составленное из кодовых слов можно декодировать только единственным способом.

Пусть есть код заданный следующей кодовой таблицей:

[math]a_1 \rightarrow b_1[/math]

[math]a_2 \rightarrow b_2[/math]

[math]a_k \rightarrow b_k[/math]

Код является однозначно декодируемым, только тогда, когда для любых строк, составленных из кодовых слов, вида:

Всегда выполняются равенства:

Заметим, что если среди кодовых слов будут одинаковые, то однозначно декодировать этот код мы уже не сможем.

Префиксный код [ править ]

Определение:
Префиксный код (англ. prefix code) — код, в котором никакое кодовое слово не является префиксом какого-то другого кодового слова.

Предпочтение префиксным кодам отдается из-за того, что они упрощают декодирование. Поскольку никакое кодовое слово не выступает в роли префикса другого, кодовое слово, с которого начинается файл, определяется однозначно, как и все последующие кодовые слова.

Пример кодирования [ править ]

Закодируем строку [math]abacaba[/math] :

Такой код можно однозначно разбить на слова:

[math]00\ 01\ 00\ 1\ 00\ 01\ 00[/math]

Преимущества префиксных кодов [ править ]

Недостатки префиксных кодов [ править ]

Пример неудачного декодирования [ править ]

Предположим, что последовательность [math]abacaba[/math] из примера передалась неверно и стала:

[math]c^<**>(abacaba) = 0001001\ 1\ 00100[/math]

Разобьем ее согласно словарю:

[math] 00\ 01\ 00\ 1\ 1\ 00\ 1\ 00[/math]

[math]a\quad b\quad a\ c\ c\quad a\ c\ a[/math]

Полученная строка совпадает только в битах, которые находились до ошибочного, поэтому декодирование неравномерного кода, содержащего ошибки, может дать абсолютно неверные результаты.

Не префиксный однозначно декодируемый код [ править ]

Как уже было сказано, префиксный код всегда однозначно декодируем. Обратное в общем случае неверно:

Мы можем ее однозначно декодировать, так как знаем, что слева от двойки и справа от тройки всегда стоит единица.

После декодирования получаем: [math]abbca[/math]

Источник

Кодирование для чайников, ч.1

Не являясь специалистом в обозначенной области я, тем не менее, прочитал много специализированной литературы для знакомства с предметом и прорываясь через тернии к звёздам набил, на начальных этапах, немало шишек. При всём изобилии информации мне не удалось найти простые статьи о кодировании как таковом, вне рамок специальной литературы (так сказать без формул и с картинками).

Статья, в первой части, является ликбезом по кодированию как таковому с примерами манипуляций с битовыми кодами, а во второй я бы хотел затронуть простейшие способы кодирования изображений.

0. Начало

Давайте рассмотрим некоторые более подробно.

1.1 Речь, мимика, жесты

1.2 Чередующиеся сигналы

В примитивном виде кодирование чередующимися сигналами используется человечеством очень давно. В предыдущем разделе мы сказали про дым и огонь. Если между наблюдателем и источником огня ставить и убирать препятствие, то наблюдателю будет казаться, что он видит чередующиеся сигналы «включено/выключено». Меняя частоту таких включений мы можем выработать последовательность кодов, которая будет однозначно трактоваться принимающей стороной.

код длина кода перекодирование информации

1.3 Контекст

2. Кодирование текста

Текст в компьютере является частью 256 символов, для каждого отводится один байт и в качестве кода могут быть использованы значения от 0 до 255. Так как данные в ПК представлены в двоичной системе счисления, то один байт (в значении ноль) равен записи 00000000, а 255 как 11111111. Чтение такого представления числа происходит справа налево, то есть один будет записано как 00000001.

Итак, символов английского алфавита 26 для верхнего и 26 для нижнего регистра, 10 цифр. Так же есть знаки препинания и другие символы, но для экспериментов мы будем использовать только прописные буквы (верхний регистр) и пробел.

Тестовая фраза «ЕХАЛ ГРЕКА ЧЕРЕЗ РЕКУ ВИДИТ ГРЕКА В РЕЧКЕ РАК СУНУЛ ГРЕКА РУКУ В РЕКУ РАК ЗА РУКУ ГРЕКУ ЦАП».

код длина кода перекодирование информации

2.1 Блочное кодирование

Информация в ПК уже представлена в виде блоков по 8 бит, но мы, зная контекст, попробуем представить её в виде блоков меньшего размера. Для этого нам нужно собрать информацию о представленных символах и, на будущее, сразу подсчитаем частоту использования каждого символа:

Источник

Урок 8_02

С древних времен знаки используются человеком для долговременного хранения информации и ее передачи на большие расстояния.

В соответствии со способом восприятия знаки можно разделить на зрительные, слуховые, осязательные, обонятельные и вкусовые, причем в человеческом общении используются знаки первых трех типов.

К зрительным знакам, воспринимаемым с помощью зрения, относятся буквы и цифры, которые используются в письменной речи, знаки химических элементов, музыкальные ноты, дорожные знаки и т. д.

К слуховым знакам, воспринимаемым с помощью слуха, относятся звуки, которые используются в устной речи, а также звуковые сигналы, которые производятся с помощью звонка, колокола, свистка, гудка, сирены и т. д.

Для слепых разработана азбука Брайля, которая использует осязательный способ восприятия текстовой информации.

В коммуникации многих видов животных особую роль играют обонятельные знаки. Например, медведи и другие дикие животные помечают место обитания клочьями шерсти, сохраняющей запах, чтобы отпугнуть чужака и показать, что данная территория уже занята.

Для долговременного хранения знаки записываются на носители информации.

Для передачи информации на большие расстояния используются знаки в форме сигналов. Всем известны световые сигналы светофора, звуковые сигналы школьного звонка оповещают о начале или конце урока, электрические сигналы передают информацию по телефонным и компьютерным сетям, электромагнитные волны передают сигналы радио и телевидения.

Знаки отображают объекты окружающего мира или понятия, т. е. имеют определенное значение (смысл).

Знаки различаются по способу связи между их формой и значением.

Иконические знаки позволяют догадаться об их смысле, так как они имеют форму, похожую на отображаемый объект. Примером таких знаков являются значки на Рабочем столе операционной системы компьютера, например значок Мой компьютер.

Символами называются знаки, для которых связь между формой и значением устанавливается по общепринятому соглашению. Примером таких знаков являются символы химических элементов, отображающие атомы химических веществ.

Если неизвестно соглашение о связи формы и значения символов, то ничего нельзя сказать о смысле информации, записанной такими знаками. Существуют найденные археологами и до сих пор нерасшифрованные тексты на древних языках, так как неизвестно значение знаков, которыми они записаны.

Таблица. Иконические знаки и символы

В современном мире широко применяется шифрование, которое использует секретный ключ в качестве соглашения о связи формы символов с их значениями. Если секретный ключ неизвестен, то содержание передаваемого текста понять невозможно.

Один и тот же символ может иметь различное значение в разных знаковых системах.

Например, знак «О» используется в качестве:

Знаковые системы являются наборами знаков определенного типа. С некоторыми знаковыми системами вы хорошо знакомы и постоянно ими пользуетесь (языки и системы счисления), с другими познакомитесь в этом разделе.

Каждая знаковая система строится на основе определенного алфавита (набора знаков) и правил выполнения операций над знаками.

Человек широко использует для представления информации знаковые системы, которые называются языками. Естественные языки начали формироваться еще в древнейшие времена в целях обеспечения обмена информацией между людьми. В настоящее время существуют сотни естественных языков (русский, английский, китайский и др.).

В устной речи, которая используется как средство коммуникации при непосредственном общении людей, в качестве знаков языка используются различные звуки (фонемы).

В основе письменной речи лежит алфавит, т. е. набор знаков (букв), которые человек различает по их начертанию. В большинстве современных языков буквы соответствуют определенным звукам устной речи. Алфавит русского языка называется кириллицей и содержит 33 знака, английский язык использует латиницу и содержит 26 знаков.

В процессе развития науки были разработаны формальные языки (системы счисления, алгебра, языки программирования и др.), основное отличие которых от естественных языков состоит в существовании строгих правил грамматики и синтаксиса.

Например, десятичную систему счисления можно рассматривать как формальный язык, имеющий алфавит (цифры) и позволяющий не только именовать и записывать объекты (числа), но и выполнять над ними арифметические операции по строго определенным правилам.

Существуют формальные языки, в которых в качестве знаков используют не буквы и цифры, а другие символы, например музыкальные ноты, изображения элементов электрических или логических схем, дорожные знаки, точки и тире (код азбуки Морзе).

Физическая реализация знаков в естественных и формальных языках может быть различной. Например, текст и числа могут быть напечатаны на бумаге, высвечены на экране монитора компьютера, записаны на магнитном или оптическом диске.

Генетический алфавит. Генетический алфавит является «азбукой», на которой строится единая система хранения и передачи наследственной информации живыми организмами.

Как слова в языках образуются из букв, так и гены состоят из знаков генетического алфавита. В процессе эволюции от простейших организмов до человека количество генов постоянно возрастало, так как было необходимо закодировать все более сложное строение и функциональные возможности живых организмов.

Генетическая информация хранится в клетках живых организмов в специальных молекулах. Эти молекулы состоят из двух длинных скрученных друг с другом в спираль цепей, построенных из четырех различных молекулярных фрагментов. Фрагменты образуют генетический алфавит и обычно обозначаются латинскими прописными буквами .

Именно двоичная знаковая система используется в компьютере, так как существующие технические устройства могут надежно сохранять и распознавать только два различных состояния (знака).

В 60-е годы XX века в СССР учеными Московского государственного университета была разработана и запущена в производство ЭВМ «Сетунь» (всего было произведено 50 экземпляров). «Сетунь» использовала троичное кодирование информации и, соответственно, состояла из устройств, способных находиться в одном из трех возможных состояний.

Код. Длина кода.

В процессе представления информации с помощью знаковой системы производится ее кодирование. Результатом кодирования является последовательность символов данной знаковой системы, то есть информационный код. Примерами кодов являются последовательности букв в тексте, цифр в числе, генетический код, двоичный компьютерный код и т. д.

Так, длина кода текста данного учебника составляет около 300 тысяч знаков, а генетический код человека в 10 тысяч раз длиннее, так как состоит из 3 миллиардов знаков генетического алфавита.

Перекодирование информации из одной знаковой системы в другую.

Информация, представленная с помощью естественных и формальных языков, может быть выражена в форме устной речи или в письменном виде. Каждая форма представления использует особую знаковую систему, ориентированную на способ ее восприятия. Устная речь использует в качестве знаков набор звуков (фонем) и рассчитана на слуховое восприятие. В основе письменной речи лежит алфавит, т. е. набор знаков (букв), которые человек воспринимает с помощью зрения.

В процессе обмена информацией между людьми часто приходится переходить от одной формы представления информации к другой. Так, в процессе чтения вслух производится переход от письменной формы представления информации к устной и, наоборот, в процессе диктанта или записи объяснения учителя происходит переход от устной формы к письменной. В процессе преобразования информации из одной формы представления (знаковой системы) в другую происходит перекодирование информации.

Средством перекодирования служит таблица соответствия знаковых систем (таблица перекодировки), которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем. Ниже приведена таблица, которая устанавливает соответствие между гласными буквами русского алфавита и фонемами.

Контрольные вопросы

1. Приведите примеры знаковых систем. Какова может быть физическая природа знаков?

2. В чем состоит различие между естественными и формальными языками?

3. Обладают ли генетическим кодом растения? Животные? Человек?

4. Почему в компьютерах используется двоичная знаковая система для кодирования информации?

5. Приведите примеры кодов и определите их длины.

6. Приведите примеры перекодирования информации из одной знаковой системы в другую. Какие в этих случаях используются таблицы перекодировки?

Источник

Корректирующие коды. Начало новой теории кодирования

код длина кода перекодирование информации

Введение

По основному своему образованию я не математик, но в связи с читаемыми мной дисциплинами в ВУЗе пришлось в ней дотошно разбираться. Долго и упорно читал классические учебники ведущих наших Университетов, пятитомную математическую энциклопедию, множество тонких популярных брошюр по отдельным вопросам, но удовлетворения не возникало. Не возникало и глубокое понимание прочитанного.

Вся математическая классика ориентирована, как правило, на бесконечный теоретический случай, а специальные дисциплины опираются на случай конечных конструкций и математических структур. Отличие подходов колоссальное, отсутствие или недостаток хороших полных примеров — пожалуй главный минус и недостаток вузовских учебников. Очень редко существует задачник с решениями для начинающих (для первокурсников), а те, что имеются, грешат пропусками в объяснениях. В общем я полюбил букинистические магазины технической книги, благодаря чему пополнилась библиотека и в определенной мере багаж знаний. Читать довелось много, очень много, но «не заходило».

Этот путь привел меня к вопросу, а что я уже могу самостоятельно делать без книжных «костылей», имея перед собой только чистый лист бумаги и карандаш с ластиком? Оказалось совсем немного и не совсем то, что было нужно. Пройден был сложный путь бессистемного самообразования. Вопрос был такой. Могу ли я построить и объяснить, прежде всего себе, работу кода, обнаруживающего и исправляющего ошибки, например, код Хемминга, (7, 4)-код?

Известно, что код Хемминга широко используется во многих прикладных программах в области хранения и обмена данными, особенно в RAID; кроме того, в памяти типа ECC и позволяет «на лету» исправлять однократные и обнаруживать двукратные ошибки.

Информационная безопасность. Коды, шифры, стегосообщения

Информационное взаимодействие путем обмена сообщениями его участников должно обеспечиваться защитой на разных уровнях и разнообразными средствами как аппаратными так и программными. Эти средства разрабатываются, проектируются и создаются в рамках определенных теорий (см. рис.А) и технологий, принятых международными договоренностями об OSI/ISO моделях.

Защита информации в информационных телекоммуникационных системах (ИТКС) становится практически основной проблемой при решении задач управления, как в масштабе отдельной личности – пользователя, так и для фирм, объединений, ведомств и государства в целом. Из всех аспектов защиты ИТКС в этой статье будем рассматривать защиту информации при ее добывании, обработке, хранении и передаче в системах связи.

Уточняя далее предметную область, остановимся на двух возможных направлениях, в которых рассматриваются два различных подхода к защите, представлению и использованию информации: синтаксическом и семантическом. На рисунке используются сокращения: кодек–кодер-декодер; шидеш – шифратор-дешифратор; скриз – скрыватель – извлекатель.

код длина кода перекодирование информации

Рисунок А – Схема основных направлений и взаимосвязи теорий, направленных на решение задач защиты информационного взаимодействия

Синтаксические особенности представления сообщений позволяют контролировать и обеспечивать правильность и точность (безошибочность, целостность) представления при хранении, обработке и особенно при передаче информации по каналам связи. Здесь главные задачи защиты решаются методами кодологии, ее большой части — теории корректирующих кодов.

Семантическая (смысловая) безопасность сообщений обеспечивается методами криптологии, которая средствами криптографии позволяет защитить от овладения содержанием информации потенциальным нарушителем. Нарушитель при этом может скопировать, похитить, изменить или подменить, или даже уничтожить сообщение и его носитель, но он не сможет получить сведений о содержании и смысле передаваемого сообщения. Содержание информации в сообщении останется для нарушителя недоступным. Таким образом, предметом дальнейшего рассмотрения будет синтаксическая и семантическая защита информации в ИТКС. В этой статье ограничимся рассмотрением только синтаксического подхода в простой, но весьма важной его реализации корректирующим кодом.

Сразу проведу разграничительную линию в решении задач информационной безопасности:
теория кодологии призвана защищать информацию (сообщения) от ошибок (защита и анализ синтаксиса сообщений) канала и среды, обнаруживать и исправлять ошибки;
теория криптологии призвана защищать информацию от несанкционированного доступа к ее семантике нарушителя (защита семантики, смысла сообщений);
теория стеганологии призвана защищать факт информационного обмена сообщениями, а также обеспечивать защиту авторского права, персональных данных (защита врачебной тайны).

В общем «поехали». По определению, а их довольно много, понять что есть код очень даже не просто. Авторы пишут, что код — это алгоритм, отображение и ещё что-то. О классификации кодов я не буду здесь писать, скажу только, что (7, 4)-код блоковый.

В какой-то момент до меня дошло, что код — это кодовые специальные слова, конечное их множество, которыми заменяют специальными алгоритмами исходный текст сообщения на передающей стороне канала связи и которые отправляются по каналу получателю. Замену осуществляет устройство-кодер, а на приемной стороне эти слова распознает устройство-декодер.

Поскольку роль сторон переменчива оба этих устройства объединяют в одно и называют сокращенно кодек (кодер/декодер), и устанавливают на обоих концах канала. Дальше, раз есть слова, есть и алфавит. Алфавит — это два символа <0, 1>, в технике массово используются блоковые двоичные коды. Алфавит естественного языка (ЕЯ) — множество символов — букв, заменяющих при письме звуки устной речи. Здесь не будем углубляться в иероглифическую письменность в слоговое или узелковое письмо.

Алфавит и слова — это уже язык, известно, что естественные человеческие языки избыточны, но что это означает, где обитает избыточность языка трудно сказать, избыточность не очень хорошо организована, хаотична. При кодировании, хранении информации избыточность стремятся уменьшить, пример, архиваторы, код Морзе и др.

Ричард Хемминг, наверное, раньше других понял, что если избыточность не устранять, а разумно организовать, то ее можно использовать в системах связи для обнаружения ошибок и автоматического их исправления в кодовых словах передаваемого текста. Он понял, что все 128 семиразрядных двоичных слов могут использоваться для обнаружения ошибок в кодовых словах, которые образуют код — подмножество из 16 семиразрядных двоичных слов. Это была гениальная догадка.

До изобретения Хемминга ошибки приемной стороной тоже обнаруживались, когда декодированный текст не читался или получалось не совсем то, что нужно. При этом посылался запрос отправителю сообщения повторить блоки определенных слов, что, конечно, было весьма неудобно и тормозило сеансы связи. Это было большой не решаемой десятилетиями проблемой.

Построение (7, 4)-кода Хемминга

Вернемся к Хеммингу. Слова (7, 4)-кода образованы из 7 разрядов С j = код длина кода перекодирование информации, j = 0(1)15, 4-информационные и 3-проверочные символа, т.е. по существу избыточные, так как они не несут информации сообщения. Эти три проверочных разряда удалось представить линейными функциями 4-х информационных символов в каждом слове, что и обеспечило обнаружение факта ошибки и ее места в словах, чтобы внести исправление. А (7, 4)-код получил новое прилагательное и стал линейным блоковым двоичным.

Линейные функциональные зависимости (правила (*)) вычислений значений символов
код длина кода перекодирование информацииимеют следующий вид:

код длина кода перекодирование информации
код длина кода перекодирование информации
код длина кода перекодирование информации

Исправление ошибки стало очень простой операцией — в ошибочном разряде определялся символ (ноль или единица) и заменялся другим противоположным 0 на 1 или 1 на 0.
Сколько же различных слов образуют код? Ответ на этот вопрос для (7, 4)-кода получается очень просто. Раз имеется лишь 4 информационных разряда, а их разнообразие при заполнении символами имеет код длина кода перекодирование информации= 16 вариантов, то других возможностей просто нет, т. е. код состоящий всего из 16 слов, обеспечивает представление этими 16-ю словами всю письменность всего языка.

Информационные части этих 16 слов получают нумерованный вид №
(код длина кода перекодирование информации):

0=0000; 4= 0100; 8=1000; 12=1100;
1=0001; 5= 0101; 9=1001; 13=1101;
2=0010; 6= 0110; 10=1010; 14=1110;
3=0011; 7= 0111; 11=1011; 15=1111.

Каждому из этих 4-разрядных слов необходимо вычислить и добавить справа по 3 проверочных разряда, которые вычисляются по правилам (*). Например, для информационного слова №6 равного 0110 имеем код длина кода перекодирование информациии вычисления проверочных символов дают для этого слова такой результат:

код длина кода перекодирование информации
код длина кода перекодирование информации
код длина кода перекодирование информации
код длина кода перекодирование информации

Шестое кодовое слово при этом приобретает вид: код длина кода перекодирование информацииТаким же образом необходимо вычислить проверочные символы для всех 16-и кодовых слов. Подготовим для слов кода 16-строчную таблицу К и последовательно будем заполнять ее клетки (читателю рекомендую проделать это с карандашом в руках).

Таблица К – кодовые слова Сj, j = 0(1)15, (7, 4) – кода Хемминга

код длина кода перекодирование информации

Описание таблицы: 16 строк — кодовые слова; 10 колонок: порядковый номер, десятичное представление кодового слова, 4 информационных символа, 3 проверочных символа, W-вес кодового слова равен числу ненулевых разрядов (≠ 0). Заливкой выделены 4 кодовых слова-строки — это базис векторного подпространства. Собственно, на этом все — код построен.

Таким образом, в таблице получены все слова (7, 4) — кода Хемминга. Как видите это было не очень сложно. Далее речь пойдет о том, какие идеи привели Хемминга к такому построению кода. Мы все знакомы с кодом Морзе, с флотским семафорным алфавитом и др. системами построенными на разных эвристических принципах, но здесь в (7, 4)-коде используются впервые строгие математические принципы и методы. Рассказ будет как раз о них.

Математические основы кода. Высшая алгебра

Подошло время рассказать какая Р.Хеммингу пришла идея открытия такого кода. Он не питал особых иллюзий о своем таланте и скромно формулировал перед собой задачу: создать код, который бы обнаруживал и исправлял в каждом слове одну ошибку (на деле обнаруживать удалось даже две ошибки, но исправлялась лишь одна из них). При качественных каналах даже одна ошибка — редкое событие. Поэтому замысел Хемминга все-таки в масштабах системы связи был грандиозным. В теории кодирования после его публикации произошла революция.

Это был 1950 год. Я привожу здесь свое простое (надеюсь доступное для понимания) описание, которого не встречал у других авторов, но как оказалось, все не так просто. Потребовались знания из многочисленных областей математики и время, чтобы все глубоко осознать и самому понять, почему это так сделано. Только после этого я смог оценить ту красивую и достаточно простую идею, которая реализована в этом корректирующем коде. Время я в основном, потратил на разбирательство с техникой вычислений и теоретическим обоснованием всех действий, о которых здесь пишу.

Создатели кодов, долго не могли додуматься до кода, обнаруживающего и исправляющего две ошибки. Идеи, использованные Хеммингом, там не срабатывали. Пришлось искать, и нашлись новые идеи. Очень интересно! Захватывает. Для поиска новых идей потребовалось около 10 лет и только после этого произошел прорыв. Коды, обнаруживающие произвольное число ошибок, были получены сравнительно быстро.

Векторные пространства, поля и группы. Полученный (7, 4)-код (Таблица К) представляет множество кодовых слов, являющихся элементами векторного подпространства (порядка 16, с размерностью 4), т.е. частью векторного пространства размерности 7 с порядком код длина кода перекодирование информацииИз 128 слов в код включены лишь 16, но они попали в состав кода не просто так.

Во-первых, они являются подпространством со всеми вытекающими отсюда свойствами и особенностями, во-вторых, кодовые слова являются подгруппой большой группы порядка 128, даже более того, аддитивной подгруппой конечного расширенного поля Галуа GF(код длина кода перекодирование информации) степени расширения n = 7 и характеристики 2. Эта большая подгруппа раскладывается в смежные классы по меньшей подгруппе, что хорошо иллюстрируется следующей таблицей Г. Таблица разделена на две части: верхняя и нижняя, но читать следует как одну длинную. Каждый смежный класс (строка таблицы) — элемент факторгруппы по эквивалентности составляющих.

Таблица Г – Разложение аддитивной группы поля Галуа GF (код длина кода перекодирование информации) в смежные классы (строки таблицы Г) по подгруппе 16 порядка.

код длина кода перекодирование информации

Столбцы таблицы – это сферы радиуса 1. Левый столбец (повторяется) – синдром слова (7, 4)-кода Хемминга, следующий столбец — лидеры смежного класса. Раскроем двоичное представление одного из элементов (25-го выделен заливкой) факторгруппы и его десятичное представление:

код длина кода перекодирование информации

Техника получение строк таблицы Г. Элемент из столбца лидеров класса суммируется с каждым элементом из заголовка столбца таблицы Г (суммирование выполняется для строки лидера в двоичном виде по mod2). Поскольку все лидеры классов имеют вес W=1, то все суммы отличаются от слова в заголовке столбца только в одной позиции (одной и той же для всей строки, но разных для столбца). Таблица Г имеет замечательную геометрическую интерпретацию. Все 16 кодовых слов представляются центрами сфер в 7-мерном векторном пространстве. Все слова в столбце от верхнего слова отличаются в одной позиции, т. е. лежат на поверхности сферы с радиусом r =1.

Второе — все множество 7-разрядных двоичных слов из 128 слов равномерно распределено по 16 сферам. Декодер может получить слово лишь из этого множества 128-ми известных слов с ошибкой или без нее. Третье — приемная сторона может получить слово без ошибки или с искажением, но всегда принадлежащее одной из 16-и сфер, которая легко определяется декодером. В последней ситуации принимается решение о том, что послано было кодовое слово — центр определенной декодером сферы, который нашел позицию (пересечение строки и столбца) слова в таблице Г, т. е номера столбца и строки.

Здесь возникает требование к словам кода и к коду в целом: расстояние между любыми двумя кодовыми словами должно быть не менее трех, т. е. разность для пары кодовых слов, например, Сi = 85=код длина кода перекодирование информации=1010101; Сj = 25=код длина кода перекодирование информации= 0011001 должна быть не менее 3; 85 — 25 = 1010101 — 0011001 =1001100 = 76, вес слова-разности W(76) = 3. (табл. Д заменяет вычисления разностей и сумм). Здесь под расстоянием между двоичными словами-векторами понимается количество не совпадающих позиций в двух словах. Это расстояние Хемминга, которое стало повсеместно использоваться в теории, и на практике, так как удовлетворяет всем аксиомам расстояния.

Замечание. (7, 4)-код не только линейный блоковый двоичный, но он еще и групповой, т. е. слова кода образуют алгебраическую группу по сложению. Это означает, что любые два кодовых слова при суммировании снова дают одно из кодовых слов. Только это не обычная операция суммирования, выполняется сложение по модулю два.

Таблица Д — Сумма элементов группы (кодовых слов), используемой для построения кода Хемминга

код длина кода перекодирование информации

Сама операция суммирования слов ассоциативна, и для каждого элемента в множестве кодовых слов имеется противоположный ему, т. е. суммирование исходного слова с противоположным дает нулевое значение. Это нулевое кодовое слово является нейтральным элементом в группе. В таблице Д- это главная диагональ из нулей. Остальные клетки (пересечения строка/столбец) — это номера-десятичные представления кодовых слов, полученные суммированием элементов из строки и столбца.При перестановке слов местами (при суммировании) результат остается прежним, более того, вычитание и сложение слов имеют одинаковый результат. Дальше рассматривается система кодирования/декодирования, реализующая синдромный принцип.

Применение кода. Кодер

Пример 1. Необходимо передать слово «цифра» в ЕЯ. Входим в таблицу ASCII-кодов, буквам соответствуют: ц –11110110, и –11101000, ф – 11110100, р – 11110000, а – 11100000 октеты. Или иначе в ASCII — кодах слово «цифра» = 1111 0110 1110 1000 1111 0100 1111 0000 1110 0000

с разбивкой на тетрады (по 4 разряда). Таким образом, кодирование слова «цифра» ЕЯ требует 10 кодовых слов (7, 4)-кода Хемминга. Тетрады представляют информационные разряды слов сообщения. Эти информационные слова (тетрады) преобразуются в слова кода (по 7 разрядов) перед отправкой в канал сети связи. Выполняется это путем векторно-матричного умножения: информационного слова на порождающую матрицу. Плата за удобства получается весьма дорого и длинно, но все работает автоматически и главное — сообщение защищается от ошибок.
Порождающая матрица (7, 4)-кода Хемминга или генератор слов кода получается выписыванием базисных векторов кода и объединением их в матрицу. Это следует из теоремы линейной алгебры: любой вектор пространства (подпространства) является линейной комбинацией базисных векторов, т.е. линейно независимых в этом пространстве. Это как раз и требуется — порождать любые векторы (7-разрядные кодовые слова) из информационных 4-разрядных.

Порождающая матрица (7, 4, 3)-кода Хемминга или генератор слов кода имеет вид:

код длина кода перекодирование информации

Справа указаны десятичные представления кодовых слов Базиса подпространства и их порядковые номера в таблице К
№ i строки матрицы — это слова кода, являющиеся базисом векторного подпространства.

Информационные слова сообщения имеют вид:

Это половины символа (ц). Для (7, 4)-кода, определенного ранее, требуется найти кодовые слова, соответствующее информационному слову-сообщению (ц) из 8-и символов в виде:

Чтобы превратить эту букву–сообщение (ц) в кодовые слова u, каждую половинку буквы-сообщения i умножают на порождающую матрицу G[k, n] кода (матрица для таблицы К):

код длина кода перекодирование информации

Получили два кодовых слова с порядковыми номерами 15 и 6.

Покажем детальное формирование нижнего результата №6 – кодового слова (умножение строки информационного слова на столбцы порождающей матрицы); суммирование по (mod2)

∙ = 0∙1 +1∙0 + 1∙0 + 0∙0 = 0(mod2);
∙ = 0∙0 +1∙1 + 1∙0 + 0∙0 = 1(mod2);
∙ = 0∙0 +1∙0 + 1∙1 + 0∙0 = 1(mod2);
∙ = 0∙0 +1∙0 + 1∙0 + 0∙1 = 0(mod2);
∙ = 0∙0 +1∙1 + 1∙1 + 0∙1 = 0(mod2);
∙ = 0∙1 +1∙0 + 1∙1 + 0∙1 = 1(mod2);
∙ = 0∙1 +1∙1 + 1∙0 + 0∙1 = 1(mod2).

В результате перемножения получили 15 и 6 слова таблицы К кода.

Применение кода. Декодер

Декодер размещается на приемной стороне канала там, где находится получатель сообщения. Назначение декодера состоит в предоставлении получателю переданного сообщения в том виде, в котором оно существовало у отправителя в момент отправления, т.е. получатель может воспользоваться текстом и использовать сведения из него для своей дальнейшей работы.

Основной задачей декодера является проверка того, является ли полученное слово (7 разрядов) тем, которое было отправлено на передающей стороне, не содержит ли слово ошибок. Для решения этой задачи для каждого полученного слова декодером путем умножения его на проверочную матрицу Н[n-k, n] вычисляется короткий вектор-синдром S (3 разряда).

Рассматриваемый код является систематическим, т. е. символы информационного слова размещаются подряд в старших разрядах кодового слова. Восстановление информационных слов выполняется простым отбрасыванием младших (проверочных) разрядов, число которых известно. Далее используется таблица ASCII-кодов в обратном порядке: входом являются информационные двоичные последовательности, а выходом – буквы алфавита естественного языка. Итак, (7, 4)-код систематический, групповой, линейный, блочный, двоичный.

Основу декодера образует проверочная матрица Н[n-k, n], которая содержит число строк, равное числу проверочных символов, а столбцами все возможные, кроме нулевого, столбцы из трех символов код длина кода перекодирование информации. Проверочная матрица строится из слов таблицы К, они выбираются так, чтобы быть ортогональными к кодирующей матрице, т.е. их произведение — нулевая матрица. Проверочная матрица получает следующий вид в операциях умножения она транспонируется. Для конкретного примера проверочная матрица Н[n-k, n] приведена ниже:

код длина кода перекодирование информации

код длина кода перекодирование информации

код длина кода перекодирование информации

код длина кода перекодирование информации

Видим, что произведение порождающей матрицы на проверочную в результате дает нулевую матрицу.

код длина кода перекодирование информации

В результате вычисленный синдром имеет нулевое значение, что подтверждает отсутствие ошибки в словах кода.

Пример 3. Обнаружение одной ошибки в слове, полученном на приемном конце канала (таблица К).

А) Пусть требуется передать 7 – е кодовое слово, т.е.

Установление факта искажения кодового слова выполняется умножением полученного искаженного слова на проверочную матрицу кода. Результатом такого умножения будет вектор, называемый синдромом кодового слова.

Выполним такое умножение для наших исходных (7-го вектора с ошибкой) данных.

код длина кода перекодирование информации

Итак, при вычислениях получен синдром S= для обоих слов одинаковый. Смотрим на проверочную матрицу и отыскиваем в ней столбец, совпадающий с синдромом. Это третий слева столбец. Следовательно, ошибка допущена в третьем слева разряде, что совпадает с условиями примера. Этот третий разряд изменяется на противоположное значение и мы вернули принятые декодером слова к виду кодовых. Ошибка обнаружена и исправлена.

Вот собственно и все, именно так устроен и работает классический (7, 4)-код Хемминга.

Здесь не рассматриваются многочисленные модификации и модернизации этого кода, так как важны не они, а те идеи и их реализации, которые в корне изменили теорию кодирования, и как следствие, системы связи, обмена информацией, автоматизированные системы управления.

Заключение

В работе рассмотрены основные положения и задачи информационной безопасности, названы теории, призванные решать эти задачи.

Задача защиты информационного взаимодействия субъектов и объектов от ошибок среды и от воздействий нарушителя относится к кодологии.

Рассмотрен в деталях (7, 4)-код Хемминга, положивший начало нового направлению в теории кодирования — синтеза корректирующих кодов.

Показано применение строгих математических методов, используемых при синтезе кода.
Приведены примеры иллюстрирующие работоспособность кода.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *