Каждая аминокислота кодируется более чем одним кодоном
Биология. 11 класс
§ 23. Генетический код и его свойства
Как вы знаете, признаки и свойства каждого организма определяются прежде всего белками, которые синтезируются в его клетках. Белки выполняют самые разнообразные функции (вспомните какие), обеспечивая тем самым протекание процессов жизнедеятельности. Можно сказать, что именно от этих биополимеров в первую очередь и зависит существование организма. Однако время функционирования белков, как и многих других биомолекул, весьма ограничено. Поэтому синтез белков в организме должен осуществляться непрерывно. Этот процесс протекает во всех клетках одноклеточных и многоклеточных организмов.
Вам также известно, что хранителем наследственной (генетической) информации, т. е. информации о первичной структуре белков, является ДНК. Участок молекулы ДНК, содержащий информацию о первичной структуре одного белка, получил название ген. Кроме того, генами называют участки ДНК, хранящие информацию о строении молекул рРНК и тРНК.
В биосинтезе белков, который осуществляется в рибосомах, ДНК прямого участия не принимает. Передача генетической информации, содержащейся в ДНК, к месту синтеза белка происходит с помощью посредника. Этим посредником является матричная (информационная) РНК (мРНК, иРНК), которая синтезируется на одной из цепей молекулы ДНК по принципу комплементарности.
В молекулах ДНК и мРНК информация о первичной структуре белков «записана» в виде последовательности нуклеотидов. Сами же белки синтезируются из аминокислот. Значит, в природе существует особая система кодирования, на основании которой последовательность нуклеотидов расшифровывается в виде последовательности аминокислот молекул белков. Этот «шифр» называется генетическим кодом. Таким образом, генетический код — это система записи информации о первичной структуре белков в виде последовательности нуклеотидов ДНК (мРНК).
Генетический код обладает следующими свойствами.
1. Код является триплетным. Это значит, что каждая аминокислота кодируется триплетом (кодоном) — сочетанием трех последовательно расположенных нуклеотидов. В состав молекул ДНК и РНК входит по 4 типа нуклеотидов. Если бы за определенную аминокислоту «отвечал» один нуклеотид, можно было бы закодировать только 4 из 20 белокобразующих аминокислот. Дублетов (по два нуклеотида) хватило бы лишь на 4 2 = 16 аминокислот. Количество возможных триплетов (сочетаний трех нуклеотидов) составляет 4 3 = 64. Этого с избытком хватает для кодирования всех 20 видов аминокислот (табл. 23.1).
Обратите внимание, что 3 из 64 кодонов (в молекулах мРНК — УАА, УАГ и УГА) не кодируют аминокислоты. Это так называемые стоп-кодоны *или нонсенс-кодоны (от англ. nonsense — бессмыслица)*, они служат сигналом окончания синтеза белка. *Остальные триплеты называются смысловыми.*
* Генетический код расшифровали американские биохимики Р. Холли, Х. Г. Корана и М. Ниренберг в середине прошлого века. Работа стартовала в 1961 г. В бесклеточные системы, содержащие все необходимые компоненты для синтеза белка (рибосомы, аминокислоты, тРНК и др.), ученые сначала вводили искусственно синтезированные мРНК, состоящие только из одного типа нуклеотидов. Было выяснено, что в присутствии, например, полицитидиловой мРНК (ЦЦЦЦЦЦ. ) синтезируется полипептид, состоящий только из остатков аминокислоты пролина, в присутствии полиуридиловой (УУУУУУ. ) — из фенилаланина. Стало понятно, что кодону ЦЦЦ соответствует пролин, а триплет УУУ кодирует фенилаланин. К 1965 г., благодаря использованию искусственно синтезированных молекул мРНК с известными повторяющимися последовательностями нуклеотидов, удалось расшифровать все остальные триплеты. В 1968 г. это открытие было удостоено Нобелевской премии.*
2. Код однозначен — каждый триплет кодирует только одну аминокислоту.
3. Как уже отмечалось, число триплетов превышает количество кодируемых аминокислот. Поэтому генетический код является избыточным (вырожденным) — одна и та же аминокислота может кодироваться разными триплетами. Например, в мРНК цистеин (Цис) может быть закодирован триплетом УГУ или УГЦ, треонин (Тре) — АЦУ, АЦЦ, АЦА или АЦГ. Некоторые аминокислоты, например лейцин (Лей), кодируются шестью различными триплетами, в то же время метионину (Мет) и триптофану (Трп) соответствует только по одному кодону (проверьте по таблице генетического кода).
4. Код не перекрывается — один и тот же нуклеотид не может одновременно входить в состав двух соседних триплетов.
5. Код непрерывен. В полинуклеотидной цепи нуклеотиды располагаются непрерывно и соседние триплеты ничем не отделены друг от друга. Это значит, что фактически деление на триплеты условно — все зависит от того, с какого именно нуклеотида начинается их считывание. Поэтому в клетках считывание информации, содержащейся в генах, всегда начинается со строго определенного нуклеотида.
Если в составе гена происходит изменение количества нуклеотидов (их выпадение или вставка) на число, не кратное трем, наблюдается так называемый сдвиг рамки считывания (рис. 23.1). Это прив одит к существенному изменению последовательности аминокислот в белке, который кодируется измененным геном. В некоторых случаях сдвиг рамки считывания приводит к возникновению стоп-кодонов, из-за чего синтез белка обрывается.
*Суть происходящего при сдвиге рамки считывания можно понять на следующем примере. Прочитайте предложение, составленное из трехбуквенных слов (аналогично триплетам):
ЖИЛ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ.
В этом предложении заключен определенный смысл, понять который можно и без знаков препинания. Выпадение одной буквы аналогично выпадению одного нуклеотида. Оно приводит к изменению порядка считывания и потере смысла:
ЖЛБ ЫЛК ОТТ ИХБ ЫЛС ЕРМ ИЛМ НЕТ ОТК ОТ — выпадение второй буквы.
То же самое произошло бы и после вставки лишней буквы. В случае замены одной буквы либо при изменении их количества на три смысл предложения меняется не столь значительно. Например:
ЖИВ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — замена третьей буквы;
БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — выпадение первых трех букв.
Однако смысл предложения (в нашей аналогии — первичная структура белка) во многом зависит от положения измененных букв (нуклеотидов). Так, смысл может существенно исказиться:
ЖИЛ БОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — выпадение пятой, шестой и седьмой букв.
Аналогичная ситуация наблюдается и с белками. В зависимости от расположения замененной (утраченной, добавленной) аминокислоты молекула белка может сохранить пространственную конфигурацию и функции, частично изменить их или же полностью утратить свои исходные характеристики.*
Как уже отмечалось, правильное считывание генетической информации обеспечивается только тогда, когда оно начинается со строго определенной позиции. У эукариот стартовым кодоном молекулы мРНК является триплет АУГ. Именно с него и начинается считывание.
6. Код универсален — у всех живых организмов одним и тем же триплетам соответствуют одни и те же аминокислоты. Иными словами, у всех организмов генетический код расшифровывается одинаково (за редким исключением). Это свидетельствует о единстве происхождения живых организмов.
*Некоторые вариации генетического кода обнаружены у бактерий, инфузорий, дрожжей, в коде митохондриальной ДНК и т. д. Например, у бактерий триплет мРНК ГУГ может играть роль стартового кодона, а у эукариот он предназначен только для кодирования аминокислоты валин. В митохондриях млекопитающих триплет УГА кодирует триптофан, в то время как в матричной РНК, синтезированной в ядре клетки, он служит стоп-кодоном. И наоборот, в коде митохондрий триплеты АГА и АГГ являются сигналами окончания синтеза белка, а в «основной версии» генетического кода им соответствует аминокислота аргинин.*
Задания части 2 ЕГЭ по теме «Биосинтез белка. Генетический код»
1. Почему реакции биосинтеза белка называют матричными?
В основе реакций матричного синтеза лежит комплементарное взаимодействие между нуклеотидами. Образуются полимеры, строение которых полностью определяется строением исходного вещества – матрицы. ДНК является матрицей для синтеза иРНК, а иРНК является матрицей для синтеза белка.
2. В каких случаях изменение последовательности нуклеотидов ДНК не влияет на структуру и функции соответствующего белка?
1) Если изменился третий нуклеотид триплета и получился триплет, кодирующий ту же самую аминокислоту.
2) Если изменения произошли в участке ДНК, который не кодирует белок.
3. Какова роль нуклеиновых кислот в биосинтезе белка?
ДНК содержит информацию для синтеза белка, иРНК переносит эту информацию к рибосоме, рРНК входит в состав рибосом, тРНК доставляет к рибосоме аминокислоты.
4. Чем объясняется огромное разнообразие белков, образующихся в живых организмах? Укажите не менее трех причин.
1) В состав белков входит 20 видов аминокислот. Количество вариантов белка, состоящего из ста аминокислот, составляет 20 в степени 100.
2) В состав белков могут входить разнообразные небелковые компоненты, например, углеводы в гликопротеинах, гем в гемоглобине.
3) Генные мутации, постоянно происходящие в организмах, приводят к изменению структуры белка, кодируемого данным геном.
5. Рассмотрите предложенную схему классификации реакций матричного синтеза. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.
6. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число нуклеотидов участков молекул иРНК и ДНК, кодирующих данный белок, и число молекул тРНК, необходимых для переноса аминокислот к месту синтеза. Ответ поясните.
1) одну аминокислоту кодируют три нуклеотида, число нуклеотидов на иРНК: 220 х 3 = 660;
2) число нуклеотидов на иРНК соответствует числу нуклеотидов на одной нити ДНК (660 нуклеотидов);
3) каждую аминокислоту переносит к месту синтеза одна тРНК, следовательно, число тРНК, участвующих в синтезе, равно 220
7. Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны. (1) При биосинтезе белка протекают реакции матричного синтеза. (2) К реакциям матричного синтеза относят только реакции репликации и транскрипции. (3) В результате транскрипции синтезируется иРНК, матрицей для которой служит вся молекула ДНК. (4) Пройдя через поры ядра, иРНК поступает в цитоплазму. (5) Информационная РНК участвует в синтезе тРНК. (6) Транспортная РНК обеспечивает доставку аминокислот для сборки белка. (7) На соединение каждой из аминокислот с тРНК расходуется энергия молекул АТФ.
8. Лекарственный препарат рекомендуется принимать при инфекционно-воспалительных процессах в организме человека, вызванных патогенными бактериями. Препарат блокирует действие бактериальных белков-ферментов, регулирующих реакции с участием ДНК, что уменьшает рост и деление клеток бактерий, приводит к их гибели. На какие процессы в клетке бактерий воздействует этот препарат? Почему прекращается рост, деление и наблюдается гибель бактериальных клеток?
1) Препарат воздействует на процессы репликации и транскрипции.
2) Блокирование репликации не дает бактериальной клетке делиться.
3) Блокирование транскрипции не дает бактериальной клетке синтезировать белки, это приводит к гибели клетки.
9. Рассмотрите предложенную схему классификации реакций матричного синтеза. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.
10. Рассмотрите предложенную схему классификации нуклеиновых кислот, участвующих в процессе биосинтеза белка. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.
11. Как вы понимаете фразу: «Код ДНК триплетен, однозначен, вырожден»?
1) Код «триплетен» означает, что каждая из аминокислот кодируется тремя нуклеотидами.
2) Код «однозначен» — каждый триплет (кодон) кодирует только одну аминокислоту.
3) Код «вырожден» означает, что каждая аминокислота
может кодироваться более чем одним кодоном.
12. Найдите три ошибки в приведенном тексте «Реакции матричного типа». Укажите номера предложений, в которых они сделаны, исправьте их. Дайте правильную формулировку. (1) В матричных реакциях биосинтеза белка участвуют нуклеиновые кислоты. (2) В результате транскрипции синтезируется РНК, матрицей для которой служит участок ДНК. (3) Реакцию синтеза РНК катализирует фермент протеиназа. (4) Пройдя через поры ядерной оболочки, иРНК поступает в цитоплазму. (5) При трансляции на рибосомах осуществляется сборка молекул белка из аминокислот. (6) Информационная РНК служит матрицей для синтеза тРНК. (7) Последовательность соединения аминокислот в белке определяется последовательностью нуклеотидов в транспортной РНК.
1) 3 – реакцию синтеза РНК катализирует РНК-полимераза;
2) 6 – иРНК служит матрицей для синтеза белка (матрицей для синтеза тРНК служит участок молекулы ДНК);
3) 7 – последовательность соединения аминокислот в белке определяется последовательностью нуклеотидов в иРНК (ДНК)
Решаем задачи на биосинетз белка. Задание 27 ЕГЭ биология.
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Решение задач на биосинтез. Основные принципы:
Для решения задач такого типа необходимо помнить следующие правила и принципы:
Смысловая и транскрибируемая цепи ДНК антипараллельны. Смысловая цепь начинается с 5´–конца, а транскрибируемая – с 3´–конца. Кодоны и антикодоны принято писать с 5´–конца на 3´–конец. В таблице генетического кода кодоны записаны с 5´–конца на 3´–конец. Транскрипция идёт в направлении 3´→ 5´, а трансляция в направлении 5´→ 3´. Если в условии задачи указывается фрагмент только одной цепи ДНК, то по умолчанию считаем её транскрибируемой (3´→ 5´). Антикодоны т-РНК антипараллельны кодонам и-РНК.
Синтез белка начинается с того момента, когда к 5′- концу иРНК присоединяется малая субъединица рибосомы, в которую заходит метиониновая тРНК (тРНК, которая несет аминокислоту метионин).
По таблице генетического кода находим последовательность аминокислот. Кодоны ищем в направлении 5’_3′.
Фраза «ответ поясните» подразумевает, что, кроме самих цепочек нуклеотидов, в ответе будут пояснения, каким образом эти цепочки были найдены. Чтобы не запутаться при поиске аминокислот, лучше записать иРНК именно в направлении 5’_3′. Антикодоны пишутся отдельно друг от друга, так как находятся в разных молекулах тРНК и не соединяются в единую цепь.
С РНК содержащего вируса в результате обратной транскрипции синтезируется ДНК, далее в результате транскрипции по принципу комплементарности синтезируется иРНК, далее с иРНК происходит трансляция и собирается белок.
Белки видоспецифичны, для каждого организма индивидуальны. Разнообразие белков обусловливает индивидуальную специфичность организмов. Ген – единица генетической информации, участок молекулы ДНК, в котором закодирована последовательность аминокислот в белке. Одна т-РНК переносит одну аминокислоту к месту синтеза белка. Генетический код триплетен – 1 аминокислота кодируется 3 нуклеотидами (1 триплетом). Антикодон т-РНК комплементарен кодону и-РНК. Последовательность нуклеотидов и-РНК комплементарна одной из цепей ДНК. Информацию о структуре белка несет одна из двух цепей ДНК. ДНК является матрицей для синтеза всех РНК клетки. Ген триплетен: каждая из 20 аминокислот зашифрована последовательностью из 3 нуклеотидов. Ген вырожден: каждая из 20 АК шифруется более, чем 1 кодоном (до 6). Код однозначен: каждый кодон шифрует 1 АК. Код универсален: един для всех живых на Земле. Одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом благодаря универсальности генетического кода (свойство генетического кода – универсальность). Считывание информации с кодирующей цепочки ДНК в направлении 3´ → 5´объясняется однонаправленностью генетического кода
Если произошла замена нуклеотида: Генная мутация – изменится кодон. Произошла замена 1 АК на другую, изменилась ДНК, иРНК, последовательность аминокислот в белке, первичная структура белка.
Основные фразы, которые можно использовать при решении данного типа задач:
ДНК двуцепочечная построена по принципу комплементарности. ДНК матрица для синтеза РНК построить по принципу комплементарности. иРНК матрица для сборки белковой молекулы. Антикодон тРНК комплементарен кодону иРНК.
Биология в лицее
Site biology teachers lyceum № 2 Voronezh city, Russian Federation
Генетический код
Генетический код — это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов в молекуле ДНК.
Реализация генетической информации в живых клетках (то есть синтез белка, закодированного в ДНК) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции (синтез полипептидной цепи на матрице иРНК).
В ДНК используется четыре нуклеотида — аденин (А), гуанин (Г), цитозин (Ц), тимин (T). Эти «буквы» составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменен урацилом (У). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности «букв».
В нуклеотидной последовательности ДНК имеются кодовые «слова» для каждой аминокислоты будущей молекулы белка — генетический код. Он заключается в определенной последовательности расположения нуклеотидов в молекуле ДНК.
Три стоящих подряд нуклеотида кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.
В настоящее время код ДНК полностью расшифрован, и мы можем говорить об определенных свойствах, характерных для этой уникальной биологической системы, обеспечивающей перевод информации с «языка» ДНК на «язык» белка.
Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает иРНК — копия одной из нитей ДНК, то чаще всего генетический код записывают на «языке РНК».
Аминокислота | Кодирующие триплеты РНК |
---|---|
Аланин | ГЦУ ГЦЦ ГЦА ГЦГ |
Аргинин | ЦГУ ЦГЦ ЦГА ЦГГ АГА АГГ |
Аспарагин | ААУ ААЦ |
Аспарагиновая кислота | ГАУ ГАЦ |
Валин | ГУУ ГУЦ ГУА ГУГ |
Гистидин | ЦАУ ЦАЦ |
Глицин | ГГУ ГГЦ ГГА ГГГ |
Глутамин | ЦАА ЦАГ |
Глутаминовая кислота | ГАА ГАГ |
Изолейцин | АУУ АУЦ АУА |
Лейцин | ЦУУ ЦУЦ ЦУА ЦУГ УУА УУГ |
Лизин | ААА ААГ |
Метионин | АУГ |
Пролин | ЦЦУ ЦЦЦ ЦЦА ЦЦГ |
Серин | УЦУ УЦЦ УЦА УЦГ АГУ АГЦ |
Тирозин | УАУ УАЦ |
Треонин | АЦУ АЦЦ АЦА АЦГ |
Триптофан | УГГ |
Фенилаланин | УУУ УУЦ |
Цистеин | УГУ УГЦ |
СТОП | УГА УАГ УАА |
Свойства генетического кода
Три стоящих подряд нуклеотида (азотистых оснований) кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.
Триплет (кодон) — последовательность из трех нуклеотидов (азотистых оснований) в молекуле ДНК или РНК, определяющая включение в молекулу белка в процессе ее синтеза определенной аминокислоты.
Один триплет не может кодировать две разные аминокислоты, шифрует только одну аминокислоту. Определенный кодон соответствует только одной аминокислоте.
Одно и то же основание не может одновременно входить в два соседних кодона.
Некоторые триплеты не кодируют аминокислоты, а являются своеобразными «дорожными знаками», которые определяют начало и конец отдельных генов, (УАА, УАГ, УГА), каждый из которых означает прекращение синтеза и расположен в конце каждого гена, поэтому мы можем говорить о полярности генетического кода.
У животных и растений, у грибов, бактерий и вирусов один и тот же триплет кодирует один и тот же тип аминокислоты, то есть генетический код одинаков для всех живых существ. Други ми словами, у ниверсальность — способность генетического кода работать одинаково в организмах разного уровня сложности от вирусов до человека. Универсальность кода ДНК подтверждает единство п роисхождения всего живого на нашей планете. На использовании свойства универсальности генетического кода основаны методы генной инженерии.
Из истории открытия генетического кода
Вопросы о том, какие нуклеотиды ответственны за включение определенной аминокислоты в белковую молекулу и какое количество нуклеотидов определяет это включение, оставались нерешенными до 1961 года. Теоретический разбор показал, что код не может состоять из одного нуклеотида, поскольку в этом случае только 4 аминокислоты могут кодироваться. Однако код не может быть и дуплетным, то есть комбинация двух нуклеотидов из четырехбуквенного «алфавита» не может охватить всех аминокислот, так как подобных комбинаций теоретически возможно только 16 (4 2 = 16).
Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трех последовательных нуклеотидов, когда число возможных комбинаций составит 64 (4 3 = 64).
Генетический код
ГЕНЕТИЧЕСКИЙ КОД, способ записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности образующих эти кислоты нуклеотидов. Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита. Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) – аденин, Г (G) – гуанин, Ц (С) – цитозин, Т (Т) – тимин; в РНК вместо тимина урацил – У (U). Каждую аминокислоту кодирует комбинация из трёх нуклеотидов – триплет, или кодон. Кратко путь переноса генетической информации обобщён в т. н. центральной догме молекулярной биологии: ДНК ` РНК f белок.
В особых случаях информация может переноситься от РНК к ДНК, но никогда не переносится от белка к генам.
Реализация генетической информации осуществляется в два этапа. В клеточном ядре на ДНК синтезируется информационная, или матричная, РНК ( транскрипция ). При этом нуклеотидная последовательность ДНК «переписывается» (перекодируется) в нуклеотидную последовательность мРНК. Затем мРНК переходит в цитоплазму, прикрепляется к рибосоме, и на ней, как на матрице, синтезируется полипептидная цепь белка ( трансляция ). Аминокислоты с помощью транспортной РНК присоединяются к строящейся цепи в последовательности, определяемой порядком нуклеотидов в мРНК.
Из четырёх «букв» можно составить 64 различных трёхбуквенных «слова» (кодона). Из 64 кодонов 61 кодирует определённые аминокислоты, а три отвечают за окончание синтеза полипептидной цепи. Так как на 20 аминокислот, входящих в состав белков, приходится 61 кодон, некоторые аминокислоты кодируются более чем одним кодоном (т. н. вырождённость кода). Такая избыточность повышает надёжность кода и всего механизма биосинтеза белка. Другое свойство кода – его специфичность (однозначность): один кодон кодирует только одну аминокислоту.
Кроме того, код не перекрывается – информация считывается в одном направлении последовательно, триплет за триплетом. Наиболее удивительное свойство кода – его универсальность: он одинаков у всех живых существ – от бактерий до человека (исключение составляет генетический код митохондрий). Учёные видят в этом подтверждение концепции о происхождении всех организмов от одного общего предка.
Расшифровка генетического кода, т. е. определение «смысла» каждого кодона и тех правил, по которым считывается генетическая информация, осуществлена в 1961–1965 гг. и считается одним из наиболее ярких достижений молекулярной биологии.