как удалить jupiter notebook windows
How to uninstall jupyter
I have been trying to uninstall jupyter
I have tried the following commands
Even after running all these commands when I type jupyter in the terminal I get the following message
What exactly is going wrong and why am I still able to use the command?
10 Answers 10
If you don’t want to use pip-autoremove (since it removes dependencies shared among other packages) and pip3 uninstall jupyter just removed some packages, then do the following:
Copy-Paste:
sudo may be needed as per your need.
In any case, all the dependencies are mentioned below(as of 21 Nov, 2020. jupyter==4.4.0 )
If you are sure you want to remove all the dependencies, then you can use Stan_MD’s answer.
Executive Edit:
Explanation of each:
Uninstall jupyter dist-packages:
pip3 uninstall jupyter
pip3 uninstall jupyter_core
pip3 uninstall jupyter-client
pip3 uninstall jupyter-console
pip3 uninstall notebook
pip3 uninstall qtconsole
pip3 uninstall nbconvert
pip3 uninstall nbformat
Kindly refer to this related question.
pip-autoremove removes a package and its unused dependencies. Here are the docs.
I ran into a similar issue when my jupyter notebook only showed Python 2 notebook. (no Python 3 notebook)
The file /home/ankit/.local/bin/jupyter was just a simple python code:
Tried to uninstall the module jupyter_core by pip uninstall jupyter_core and it worked.
Reinstalled jupyter with pip3 install jupyter and everything was back to normal.
If you installed Jupiter notebook through anaconda, this may help you:
If you are using jupyter notebook, You can remove it like this:
You should use conda uninstall if you installed it with conda.
Change directory, if you didn’t add the following as your PATH: cd C:\Users
Type: pip-autoremove jupyter It will ask to type y/n to confirm the action.
In my case, I have installed it via pip3 on mac.
For Mac OS, you may use the below command in order to remove files manually.
I also had the same issue I installed jupyter-lab on my system after I thought I should install it on virtual env. So I tried to uninstall it but pip did not remove its dependencies. I also tried pip-autoremove but It does not found jupyter. So I found an easy solution. first I create a virtual env
after that activate it
Now install jupyter in virtual env
after that I create requirements.txt
now we have jupyter and all its dependencies in a txt file so deactivate virtual env
Now we can remove all of the dependencies of jupyter by this txt file.
I found this is the easiest way to remove jupyter now you can also delete jupyter virtual env.
Руководство по Jupyter Notebook для начинающих
Jupyter Notebook — это мощный инструмент для разработки и представления проектов Data Science в интерактивном виде. Он объединяет код и вывод все в виде одного документа, содержащего текст, математические уравнения и визуализации.
Такой пошаговый подход обеспечивает быстрый, последовательный процесс разработки, поскольку вывод для каждого блока показывается сразу же. Именно поэтому инструмент стал настолько популярным в среде Data Science за последнее время. Большая часть Kaggle Kernels (работы участников конкурсов на платформе Kaggle) сегодня созданы с помощью Jupyter Notebook.
Этот материал предназначен для новичков, которые только знакомятся с Jupyter Notebook, и охватывает все этапы работы с ним: установку, азы использования и процесс создания интерактивного проекта Data Science.
Настройка Jupyter Notebook
Чтобы начать работать с Jupyter Notebook, библиотеку Jupyter необходимо установить для Python. Проще всего это сделать с помощью pip:
Теперь нужно разобраться с тем, как пользоваться библиотекой. С помощью команды cd в командной строке (в Linux и Mac) в первую очередь нужно переместиться в папку, в которой вы планируете работать. Затем запустите Jupyter с помощью следующей команды:
Это запустит сервер Jupyter, а браузер откроет новую вкладку со следующим URL: https://localhost:8888/tree. Она будет выглядеть приблизительно вот так:
Отлично. Сервер Jupyter работает. Теперь пришло время создать первый notebook и заполнять его кодом.
Основы Jupyter Notebook
Для создания notebook выберите «New» в верхнем меню, а потом «Python 3». Теперь страница в браузере будет выглядеть вот так:
Теперь напишем какой-нибудь код!
Вывод должен отобразиться прямо в notebook. Это и позволяет заниматься программированием в интерактивном формате, имея возможность отслеживать вывод каждого шага.
Если есть несколько ячеек, то между ними можно делиться переменными и импортами. Это позволяет проще разбивать весь код на связанные блоки, не создавая переменную каждый раз. Главное убедиться в запуске ячеек в правильном порядке, чтобы переменные не использовались до того, как были созданы.
Добавление описания к notebook
В Jupyter Notebook есть несколько инструментов, используемых для добавления описания. С их помощью можно не только оставлять комментарии, но также добавлять заголовки, списки и форматировать текст. Это делается с помощью Markdown.
Первым делом нужно поменять тип ячейки. Нажмите на выпадающее меню с текстом «Code» и выберите «Markdown». Это поменяет тип ячейки.
Интерактивная наука о данных
Соорудим простой пример проекта Data Science. Этот notebook и код взяты из реального проекта.
Также обратите внимание на то, как переменные из предыдущих ячеек, содержащие данные из CSV-файла, используются в последующих ячейках в том случае, если по отношению к первым была нажата кнопка «Run».
Это простейший способ создания интерактивного проекта Data Science!
На сервере Jupyter есть несколько меню, с помощью которых от проекта можно получить максимум. С их помощью можно взаимодействовать с notebook, читать документацию популярных библиотек Python и экспортировать проект для последующей демонстрации.
Редактировать (Edit): используется, чтобы вырезать, копировать и вставлять код. Здесь же можно поменять порядок ячеек, что понадобится для демонстрации проекта.
Вставить (Insert): для добавления ячеек перед или после выбранной.
Ячейка (Cell): отсюда можно запускать ячейки в определенном порядке или менять их тип.
Помощь (Help): в этом разделе можно получить доступ к важной документации. Здесь же упоминаются горячие клавиши для ускорения процесса работы. Наконец, тут можно найти ссылки на документацию для самых важных библиотек Python: Numpy, Scipy, Matplotlib и Pandas.
Особенности Jupyter Notebook, о которых вы (может быть) не слышали
Jupyter Notebook – это крайне удобный инструмент для создания красивых аналитических отчетов, так как он позволяет хранить вместе код, изображения, комментарии, формулы и графики:
Ниже мы расскажем о некоторых фишках, которые делают Jupyter очень крутым. О них можно прочитать и в других местах, но если специально не задаваться этим вопросом, то никогда и не прочитаешь.
Jupyter поддерживает множество языков программирования и может быть легко запущен на любом сервере, необходим только доступ по ssh или http. К тому же это свободное ПО.
Основы
Список хоткеев вы найдете в Help > Keyboard Shortcuts (список периодически дополняется, так что не стесняйтесь заглядывать туда снова).
Отсюда можно получить представление о взаимодействии с блокнотом (notebook). Если вы будете постоянно работать c Jupyter, большинство комбинаций вы быстро выучите.
Экспорт блокнота
Простейший способ — сохранить блокнот в формате IPython Notebook (.ipynb), но так как их используют не все, есть и другие варианты:
Построение графиков
Есть несколько вариантов построения графиков:
Magic-команды
Магические команды (magics) превращают обычный python в магический python. Magic-команды — это ключ к могуществу IPython’а.
Можно управлять переменными среды для вашего блокнота без перезапуска Jupyter-сервера. Некоторые библиотеки (такие, как theano) используют переменные среды, чтобы контролировать поведение, и %env — самый удобный способ.
Выполнение shell-команд
В Notebook можно вызвать любую shell-команду. Это особенно удобно для управления виртуальной средой.
Подавление вывода последней строки
Иногда вывод не нужен, и в этом случае можно или использовать команду pass с новой строки, или поставить точку запятой в конце строки:
вызовет следующее всплывающее окно:
Используйте %run для выполнения кода на Python
Но эта команда может выполнять и другие блокноты из Jupyter! Иногда это очень полезно.
Обратите внимание, что %run — это не то же, что импорт python-модуля.
Загрузит код напрямую в ячейку. Можно выбрать файл локально или из сети.
Если раскомментировать и выполнить код ниже, содержание ячейки заменится на содержание файла.
%store — ленивая передача данных между блокнотами
%who для анализа переменных глобального пространства имен
Тайминг
Если вы хотите замерить время выполнения программы или найти узкое место в коде, на помощь придет IPython.
Профилирование: %prun, %lprun, %mprun
%lprun позволяет профилировать с точностью до строк кода, но, кажется, в последнем релизе Python он не работает, так что в этот раз обойдемся без магии:
Дебаг с помощью %debug
У Jupyter есть собственный интерфейс для ipdb, что позволяет зайти внутрь функции и посмотреть, что в ней происходит.
Это не PyCharm — потребуется время, чтобы освоить, но при необходимости дебага на сервере это может быть единственным вариантом (кроме pdb через терминал).
Немного более простой способ — команда %pdb, которая активирует дебаггер, когда выбрасывается исключение:
Запись формул в LateX
Маркдаун ячейки могут отрисовывать формулы LateX с помощью MathJax.
Маркдаун — важная часть блокнотов, так что не забывайте использовать его выразительные возможности!
Использование разных языков внутри одного блокнота
Если вы соскучились по другим языкам программирования, можете использовать их в Jupyter Notebook:
Анализ Big Data
Существует несколько решений, чтобы запрашивать/обрабатывать большие объемы данных:
Ваши коллеги могут экспериментировать с вашим кодом, ничего не устанавливая
Такие сервисы, как mybinder, предоставляют доступ к Jupiter Notebook со всеми установленными библиотеками, так что пользователь может с полчаса поиграться с вашим кодом, имея под рукой только браузер.
Вы также можете установить вашу собственную системы с помощью jupyterhub, что очень удобно, если вы проводите мини-курс или мастер-класс и вам некогда думать о машинах для студентов.
Написание функций на других языках
Иногда скорости NumPy бывает недостаточно, и мне необходимо написать немного быстрого кода. В принципе, можно собрать нужные функции в динамические библиотеки, а затем написать обертку на Python…
Но гораздо лучше, когда скучная часть работы сделана за нас, правда?
Ведь можно написать нужные функции на Cython или Fortran и использовать их напрямую из кода на Python.
Для начала нужно установить модули
Лично я предпочитаю Fortran, на котором, я считаю, удобно писать функции для обработки большого объема численных данных. Подробнее о его использовании можно почитать здесь.
Должен заметить, что есть и другие способы ускорить ваш код на Python. Примеры можно найти в моем блокноте.
Множественный курсор
С недавнего времени Jupyter поддерживает множественный курсор, такой, как в Sublime или IntelliJ!
Источник: swanintelligence.com/multi-cursor-in-jupyter.html
Расширения Jupyter-contrib
устанавливаются с помощью
Это целое семейство различных расширений, включая, например, jupyter spell-checker и code-formatter, которых по умолчанию в Jupyter нет.
RISE: презентации в Notebook
Расширение, написанное Damian Avila, позволяет демонстрировать блокноты как презентации. Пример такой презентации: bollwyvl.github.io/live_reveal/#/7
Это может пригодиться, если вы обучаете использованию какой-либо библиотеки.
Система вывода Jupyter
Блокноты отображаются в HTML, и вывод ячейки тоже может быть в формате HTML, так что вы можете выводить все, что душе угодно: видео, аудио, изображения.
В этом примере я просматриваю содержимое директории с картинками в моем репозитории и отображаю первые пять из них.
Я мог бы получить тот же список bash-командой,
потому что magic-команды и bash-вызовы возвращают переменные Python:
Повторное подключение к ядру
Давным давно, если вы запускали какой-нибудь долгий процесс и в какой-то момент подключение к серверу IPython прерывалось, вы полностью теряли возможность отслеживать процесс вычислений (если только вы не записывали эти данные в файл). Приходилось или прерывать работу ядра с риском потерять некоторые результаты, или ждать окончания процесса, не имея представления о том, что в данный момент происходит.
Теперь опция Reconnect to kernel позволяет заново подключиться к работающему ядру, не прерывая вычислений, и увидеть последний вывод (хотя какая-то часть вывода все же будет потеряна).
Пишите ваши посты в Notebook
такие, как этот. Используйте nbconvert, чтобы экспортировать в HTML.
Установка, запуск и подключение к Jupyter Notebook на удаленном сервере
Published on January 7, 2020
Введение
Jupyter Notebook — интерактивное веб-приложение с открытым исходным кодом, позвоялющее писать и запускать программный код более чем на 40 языках программирования, включая Python, R, Julia и Scala. Jupyter Notebook — это продукт Project Jupyter, очень полезный для итеративного программирования, поскольку он позволяет написать небольшой фрагмент кода, запустить его и вывести результат.
Jupyter Notebook позволяет создавать документы в форме блокнота, обычно называемые «блокнотами». Блокноты, создаваемые Jupyter Notebook, представляют собой доступные для публикации и воспроизведения исследовательские документы, содержащие элементы расширенного текста, уравнения, код и результаты исполнения (рисунки, таблицы, интерактивные графики). Блокноты можно экспортировать в файлы кода, документы HTML или PDF, а также использовать для создания интерактивных слайд-шоу или веб-страниц.
Эта статья расскажет вам о том, как установить и настроить приложение Jupyter Notebook на веб-сервере Ubuntu 18.04 и подключиться к нему с локального компьютера. Также мы покажем, как использовать Jupyter Notebook для запуска примера кода на Python.
Предварительные требования
Для данного обучающего руководства вам потребуется следующее:
Кроме того, если на вашем локальном компьютере используется Windows, вам нужно будет установить PuTTY для создания туннеля SSH для подключения к серверу. Для загрузки и установки PuTTY следуйте указаниям обучающего модуля Создание ключей SSH с помощью PuTTY в Windows.
Шаг 1 — Установка Jupyter Notebook
Поскольку блокноты используются для записи, запуска и просмотра результатов выполнения небольших фрагментов программного кода, предварительно нужно настроить поддержку языка программирования. Jupyter Notebook использует ядро с привязкой к языкам, компьютерную программу, которая запускает и проводит внутренний анализ кода. В Jupyter Notebook имеется много ядер для разных языков, по умолчанию используется IPython. В этом обучающем модуле вы научитесь настраивать Jupyter Notebook для запуска кода Python через ядро IPython.
Начнем с активации виртуальной среды:
После этого в вашей командной строке будет отображаться имя вашей среды в качестве префикса.
Теперь вы находитесь в виртуальной среде и можете начать установку Jupyter Notebook:
Если установка выполнена успешна, вы увидите примерно следующий результат:
Установка Jupyter Notebook на ваш сервер завершена. Теперь мы перейдем к запуску приложения.
Шаг 2 — Запуск Jupyter Notebook
Jupyter Notebook необходимо запускать с VPS, чтобы вы могли подключаться к нему с локального компьютера, используя туннель SSH и свой любимый браузер.
Чтобы запустить сервер Jupyter Notebook, введите следующую команду:
После запуска команды вы увидите примерно следующий результат:
Затем выйдите из сервера, используя команду exit :
Вы только что запустили Jupyter Notebook на своем сервере. Чтобы получить доступ к приложению и начать работать с блокнотами, вам потребуется подключиться к приложению через туннель SSH и браузер на локальном компьютере.
Шаг 3 — Подключение к приложению Jupyter Notebook через туннель SSH
Туннель SSH — простой и быстрый способ подключиться к приложению Jupyter Notebook, запущенному на вашем сервере. Secure Shell (обычно SSH) — это сетевой протокол, позволяющий выполнить защищенное подключение к удаленному серверу по незащищенной сети.
Протокол SSH включает механизм переадресации портов, позволяющий подключаться через туннель к определенным приложениям на определенном порту сервера с определенного порта на локальном компьютере. Мы научимся выполнять безопасную «переадресацию» приложения Jupyter Notebook на вашем сервере (по умолчанию использует порт 8888 ) на порт вашего локального компьютера.
Предпочтительный метод создания туннеля SSH зависит от операционной системы вашего локального компьютера. Выберите ниже подраздел, больше всего подходящий для вашего компьютера.
Примечание. Приложение Jupyter Notebook можно установить через веб-консоль DigitalOcean, однако подключение к приложению через туннель SSH следует выполнять с помощью терминала или PuTTY.
Создание туннелей SSH в macOS или Linux
Если на вашем локальном компьютере используется Linux или macOS, туннель SSH можно создать, запустив всего одну команду.
Если эта команда не выдаст никаких ошибок, вы войдете на удаленный сервер. Там вы должны активировать виртуальную среду:
Затем запустите приложение Jupyter Notebook:
Создание туннелей SSH с использованием Windows и PuTTY
PuTTY — клиент SSH с открытым исходным кодом для Windows, который можно использовать для подключения к вашему серверу. После загрузки и установки PuTTY на ваш компьютер Windows (как описано в обучающем модуле из предварительных требований) откройте программу и введите URL или IP-адрес вашего сервера, как показано здесь:
Затем нажмите кнопку Open (Открыть). Ваш компьютер подключится к серверу через SSH и соединит желаемые порты туннелем. Если никаких ошибок не появится, вы можете активировать свою виртуальную среду:
Затем запустите Jupyter Notebook:
Затем откройте в предпочитаемом браузере локальный порт, например http://localhost: 8000 (или любой выбранный номер порта), чтобы подключиться к экземпляру Jupyter Notebook, запущенному на сервере. После подключения к Jupyter Notebook переходите к шагу 4, чтобы научиться его использовать.
Шаг 4 — Использование Jupyter Notebook
К этому моменту вы должны были подключиться к серверу через туннель SSH и запустить на сервере приложение Jupyter Notebook. После перехода на адрес http://localhost: 8000 вы увидите страницу входа в систему:
В поле Password (Пароль) или поле токена сверху введите токен, показываемый в результатах после запуска jupyter notebook на сервере:
Также вы можете скопировать URL с экрана терминала и вставить его в адресную строку браузера.
Jupyter Notebook автоматически покажет все файлы и папки, хранящиеся в каталоге, откуда выполняется запуск. Создайте новый файл блокнота, нажав New (Создать) и выбрав Python 3 в правом верхнем углу информационной панели Notebook:
В новом блокноте измените первую ячейку так, чтобы она принимала синтаксис разметки. Для этого нажмите Cell > Cell Type > Markdown (Ячейка > Тип ячейки > Разметка) на панели навигации сверху. Помимо разметки этот тип ячейки также позволяет записывать уравнения в LaTeX. Например, введите в ячейку следующее после ее переключения на разметку:
Вы можете использовать ячейки разметки для заметок и документирования программного кода.
Теперь выполним простое уравнение и распечатаем результат. Нажмите Insert > Insert Cell Below (Вставка > Вставить ячейку снизу), чтобы вставить ячейку. Введите в новую ячейку следующий код:
Для запуска кода нажмите CTRL + ENTER и получите следующий результат:
Это довольно простые примеры того, что можно сделать с Jupyter Notebook. Однако это очень мощное приложение, которое можно использовать для самых разных целей. Отсюда вы можете добавить некоторые библиотеки Python и использовать блокнот, как и в любой другой среде разработки Python.
Заключение
Теперь вы можете писать воспроизводимый код Python и текст, используя приложение Jupyter Notebook на удаленном сервере. Чтобы пройти быстрый обзор Jupyter Notebook, нажмите Help (Справка) в верхней панели навигации и выберите пункт User Interface Tour (Обзор пользовательского интерфейса), как показано здесь:
Если вы заинтересовались, вы можете узнать больше о Jupyter Notebook из документации Project Jupyter. Также вы можете использовать полученные в этом обучающем модуле знания, чтобы научиться программировать на Python 3.