что такое скомпилировать код

Что такое компиляция в программировании?

Компилируется ли язык программирования или интерпретируется, на самом деле это не зависит от природы языка программирования. Любой язык программирования может интерпретироваться так называемым интерпретатором или компилироваться с помощью так называемого компилятора.

Рабочий цикл программы

При использовании любого языка программирования существует определенный рабочий цикл создания кода. Вы пишете его, запускаете, находите ошибки и отлаживаете. Таким образом, вы переписываете и дописываете программу, проверяете ее. То, о чем пойдет речь в этой статье, это « запускаемая » часть программы.

Когда пишете программу, вы хотите, чтобы ее инструкции работали на компьютере. Компьютер обрабатывает информацию с помощью процессора, который поэтапно выполняет инструкции, закодированные в двоичном формате. Как из выражения « a = 3; » получить закодированные инструкции, которые процессор может понять?

Мы делаем это с помощью компиляции. Существует специальные приложения, известные как компиляторы. Они принимают программу, которую вы написали. Затем анализируют и разбирают каждую часть программы и строят машинный код для процессора. Часто его также называют объектным кодом.

На одном из этапов процесса обработки задействуется компоновщик, принимающий части программы, которые отдельно были преобразованы в объектный код, и связывает их в один исполняемый файл. Вот схема, описывающая данный процесс:

что такое скомпилировать код

Конечным элементом этого процесса является исполняемый файл. Когда вы запускаете или сообщаете компьютеру, что это исполняемый файл, он берет первую же инструкцию из него, не фильтрует, не преобразует, а сразу запускает программу и выполняет ее без какого-либо дополнительного преобразования. Это ключевая характеристика процесса компиляции — его результат должен быть исполняемым файлом, не требующим дополнительного перевода, чтобы процессор мог начать выполнять первую инструкцию и все следующие за ней.

Первые компиляторы были написаны непосредственно через машинный код или с использованием ассемблеров. Но цель компилятора очевидна: перевести программу в исполняемый машинный код для конкретного процессора.

Не все языки программирования учитывают это в своей концепции. Например, Java предназначался для запуска в « интерпретирующей » среде, а Python всегда должен интерпретироваться.

Интерпретация программы

Альтернативой компиляции является интерпретация. Чем отличаются компиляторы и интерпретаторы? Основная разница между компилятором и интерпретатором заключается в том, как они работают. Компилятор берет всю программу и преобразует ее в машинный код, который понимает процессор.

Интерпретатор — это исполняемый файл, который поэтапно читает программу, а затем обрабатывает, сразу выполняя ее инструкции.

Другими словами, программа-интерпретатор выполняет программу поэтапно как часть собственного исполняемого файла. Объектный код не передается процессору, интерпретатор сам является объектным кодом, построенным таким образом, чтобы его можно было вызвать в определенное время.

Это ломает рабочий цикл, который был приведен на диаграмме выше. Теперь у нас есть новая диаграмма:

что такое скомпилировать код

На ней мы видим, что в отличии от компилятора, интерпретатор всегда должен быть под рукой, чтобы мы могли вызвать его и запустить нашу программу. В некотором смысле интерпретатор становится процессором. Программы, написанные для интерпретации, называются « скриптами », потому что они являются сценариями действий для другой программы, а не прямым машинным кодом.

Природа интерпретатора

Интерпретаторы могут создаваться по-разному. Существуют интерпретаторы, которые читают исходную программу и не выполняют дополнительной обработки. Они просто берут определенное количество строк кода за раз и выполняют его.

Некоторые интерпретаторы выполняют собственную компиляцию, но обычно преобразуют программу байтовый код, который имеет смысл только для интерпретатора. Это своего рода псевдо машинный язык, который понимает только интерпретатор.

Такой код быстрее обрабатывается, и его проще написать для исполнителя ( части интерпретатора, которая исполняет ), который считывает байтовый код, а не код источника.

Есть интерпретаторы, для которых этот вид байтового кода имеет более важное значение. Например, язык программирования Java « запускается » на так называемой виртуальной машине. Она является исполняемым кодом или частью программы, которая считывает конкретный байтовый код и эмулирует работу процессора. Обрабатывая байтовый код так, как если бы процессор компьютера был виртуальным процессором.

За и против

Основным аргументом за использование процесса компиляции является скорость. Возможность компилировать любой программный код в машинный, который может понять процессор ПК, исключает использование промежуточного кода. Можно запускать программы без дополнительных шагов, тем самым увеличивая скорость обработки кода.

Но наибольшим недостатком компиляции является специфичность. Когда компилируете программу для работы на конкретном процессоре, вы создаете объектный код, который будет работать только на этом процессоре. Если хотите, чтобы программа запускалась на другой машине, вам придется перекомпилировать программу под этот процессор. А перекомпиляция может быть довольно сложной, если процессор имеет ограничения или особенности, не присущие первому. А также может вызывать ошибки компиляции.

Основное преимущество интерпретации — гибкость. Можно не только запускать интерпретируемую программу на любом процессоре или платформе, для которых интерпретатор был скомпилирован. Написанный интерпретатор может предложить дополнительную гибкость. В определенном смысле интерпретаторы проще понять и написать, чем компиляторы.

С помощью интерпретатора проще добавить дополнительные функции, реализовать такие элементы, как сборщики мусора, а не расширять язык.

Другим преимуществом интерпретаторов является то, что их проще переписать или перекомпилировать для новых платформ.

Написание компилятора для процессора требует добавления множества функций, или полной переработки. Но как только компилятор написан, можно скомпилировать кучу интерпретаторов и на выходе мы имеем перспективный язык. Не нужно повторно внедрять интерпретатор на базовом уровне для другого процессора.

Самым большим недостатком интерпретаторов является скорость. Для каждой программы выполняется так много переводов, фильтраций, что это приводит к замедлению работы и мешает выполнению программного кода.

Это проблема для конкретных real-time приложений, таких как игры с высоким разрешением и симуляцией. Некоторые интерпретаторы содержат компоненты, которые называются just-in-time компиляторами ( JIT ). Они компилируют программу непосредственно перед ее исполнением. Это специальные программы, вынесенные за рамки интерпретатора. Но поскольку процессоры становятся все более мощными, данная проблема становится менее актуальной.

Заключение

Для меня не имеет значения, скомпилировано что-то или интерпретировано, если оно может выполнить задачу эффективно.

Сообщите мне, что бы вы предпочли: интерпретацию или компиляцию? Спасибо за уделенное время!

Пожалуйста, оставьте ваши комментарии по текущей теме статьи. Мы крайне благодарны вам за ваши комментарии, дизлайки, подписки, отклики, лайки!

Источник

Языки программирования

Страницы

Компиляция и исполнение кода на C++

Что такое компиляция?

что такое скомпилировать код

Компиляция — преобразование одностороннее, нельзя восстановить исходный код.

Для того, чтобы скомпилировать программу на C++ для некоторой архитектуры X, необязательно устанавливать компилятор С++ на компьютер с архитектурой X.

Не каждая программа, написанная на компилируемом языке, переносима. Т.е. не любая программа, написанная на компилируемом языке, будет работать везде одинаково.

Плюсы и минусы компилируемости в машинный код

Общая схема

что такое скомпилировать код

Этап 1: препроцессор

Язык препроцессора – это специальный язык программирования, встроенный в C++. Препроцессор работает с кодом на C++ как с текстом.

Этап 2: компиляция

На вход компилятору поступает код на C++ после обработки препроцессором.

Каждый файл с кодом компилируется отдельно и независимо от других файлов с кодом. Компилируется только файлы с кодом (т.е. *.cpp).

Заголовочные файлы сами по себе ни во что не компилируются, только в составе файлов с кодом.

Если в коде C++ вы вызывает не объявленную функцию, то это ошибка этапа компиляции.

Этап 3: линковка (компоновка)

На этом этапе все объектные файлы объединяются в один исполняемый (или библиотечный) файл. При этом происходит подстановка адресов функций в места их вызова.

По каждому объектному файлу строится таблица всех функций, которые в нём определены.

На этапе компоновки важно, что каждая функция имеет уникальное имя. В C++ может быть две функции с одним именем, но разными параметрами. Имена функций искажаются (mangle) таким образом, что в их имени кодируются их параметры.

Например, компилятор GCC превратит имя функции foo

Аналогично функциям в линковке нуждаются глобальные переменные.

Точка входа — функция, вызываемая при запуске программы. По умолчанию — это функция main:

Даже для программы, состоящей всего из одного файла и из одной пустой функции int main() < return 0; >все равно требуется ликовка.

Если в коде C++ вы вызываете функцию, которая была объявлена, но не была определена, то это ошибка этапа линковки.

Источник

Компиляция (программирование)

Компилировать — проводить трансляцию машинной программы с проблемно-ориентированного языка на машинно-ориентированный язык. [3]

Содержание

Виды компиляторов [2]

Виды компиляции [2]

Основы

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен центральным процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной.

Для каждой целевой машины (Apple и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС получать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут быть оптимизированы под разные типы процессоров из одного семейства (путём использования специфичных для этих процессоров инструкций). Например, код, скомпилированный под процессоры семейства MMX, SSE2.

Также существуют компиляторы, переводящие программу с языка высокого уровня на язык ассемблера.

Существуют программы, которые решают обратную задачу — перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а программы — декомпиляторами. Но поскольку компиляция — это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах — например, существует довольно надёжный декомпилятор для Flash. Сходным процессом является дизассемблирование машинного кода в код на языке ассемблера, который всегда выполняется успешно. Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически однозначное соответствие.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

В конкретных реализациях компиляторов эти этапы могут быть раздельны или совмещены в том или ином виде.

Трансляция и компоновка

Важной исторической особенностью компилятора, отражённой в его названии (англ. compile — собирать вместе, составлять), являлось то, что он мог производить и компоновку (то есть содержал две части — транслятор и компоновщик). Это связано с тем, что раздельная компиляция и компоновка как отдельная стадия сборки выделились значительно позже появления компиляторов, и многие популярные компиляторы (например, GCC) до сих пор физически объединены со своими компоновщиками. В связи с этим, вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один).

Интересные факты

Примечания

См. также

Литература

Условная компиляция — В информатике, препроцессор это компьютерная программа, принимающая данные на входе, и выдающая данные, предназначенные для входа другой программы, например, такой как компилятор. О данных на выходе препроцессора говорят, что они находятся в… … Википедия

Объектно-ориентированное программирование — Эта статья во многом или полностью опирается на неавторитетные источники. Информация из таких источников не соответствует требованию проверяемости представленной информации, и такие ссылки не показывают значимость темы статьи. Статью можно… … Википедия

JIT-компиляция — Just in time compilation (JIT, компиляция «на лету»), dynamic translation (динамическая компиляция) технология увеличения производительности программных систем, использующих байт код, путём компиляции байт кода в машинный код… … Википедия

Сравнение языков программирования — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Условные обозначения … Википедия

Пайтон — Python Класс языка: функциональный, объектно ориентированный, императивный, аспектно ориентированный Тип исполнения: интерпретация байт кода, компиляция в MSIL, компиляция в байт код Java Появился в: 1990 г … Википедия

ГОСТ 19781-90: Обеспечение систем обработки информации программное. Термины и определения — Терминология ГОСТ 19781 90: Обеспечение систем обработки информации программное. Термины и определения оригинал документа: 9. Абсолютная программа Non relocatable program Программа на машинном языке, выполнение которой зависит от ее… … Словарь-справочник терминов нормативно-технической документации

Паскаль (язык) — Pascal Семантика: процедурный Тип исполнения: компилятор Появился в: 1970 г. Автор(ы): Никлаус Вирт Паскаль (англ. Pascal) высокоуровневый язык программирования общего назначения. Один из наиболее известных языков программирования, широко… … Википедия

Паскаль (язык программирования) — Эта статья или раздел нуждается в переработке. В Паскале нет модулей, ООП и прочих новомодных веяний. Описание расширений должно присутствовать только в статьях о соответ … Википедия

D (язык программирования) — У этого термина существуют и другие значения, см. D. D Семантика: мультипарадигменный: императивное, объектно ориентированное, обобщённое программирование Тип исполнения: компилятор Появился в: 1999 Автор(ы) … Википедия

Источник

Что такое компилятор?

что такое скомпилировать код

В этом гайде вы узнаете о том, что такое компилятор и как он работает. Мы разберем этапы компиляции и от чего зависит выбор подходящего компилятора. Этот материал поможет лучше понять, как компьютер выполняет программный код и почему иногда код не компилируется.

Зачем нужен компилятор?

Процессор — самая важная часть компьютера. Он обрабатывает информацию, выполняет команды пользователя и следит за работой всех подключенных устройств. Но процессор может разобрать только машинный код — набор 0 и 1, которые записаны в определённом порядке.

Почему именно 0 и 1? В процессор поступают электрические сигналы. Сильный сигнал обозначается цифрой 1, а слабый — 0. Набор таких цифр обозначает какую-то команду. Процессор ее распознает и выполняет.

Программы для первых компьютеров выглядели как огромные наборы 0 и 1. Чтобы записать такую программу, инженеры пользовались гибкими картонными карточками — перфокартами. Цифры на перфокарте записывались поочередно, в несколько строк. Чтобы записать 1, программист делал отверстие в карте. Места без отверстия обозначали 0.

что такое скомпилировать код

Компьютер считывал перфокарту специальным устройством и выполнял записанную команду. Для одной программы составляли сотни перфокарт.

Писать их было долго и сложно, поэтому инженеры стали создавать языки программирования, обозначая команды словами и знаками. Для того, чтобы процессор понимал, какие команды записаны в программе, программисты создали компилятор — программу, которая преобразует программный код в машинный.

что такое скомпилировать код

Как работает компилятор?

Преобразование программного кода в машинный называется компиляцией. Компиляция только преобразует код. Она не запускает его на исполнение. В этот момент он “статически” (то есть без запуска) транслируется в машинный код. Это сложный процесс, в котором сначала текст программы разбирается на части и анализируется, а затем генерируется код, понятный процессору.

что такое скомпилировать код

Разберём этапы компиляции на примере вычисления периметра прямоугольника:

После запуска программы компилятору нужно определить, какие команды в ней записаны. Сначала компилятор разделяет программу на слова и знаки — токены, и записывает их в список. Такой процесс называется лексическим анализом. Его главная задача — получить токены.

Компилятор должен понять, какие токены в списке связаны с токен-оператором. Чтобы сделать это правильно, для каждого оператора строится специальная структура — логическое дерево или дерево разбора.

Так операция P = 2*(a + b) будет преобразована в логическое дерево:

что такое скомпилировать код

Теперь каждое дерево нужно разобрать на команды, и каждую команду преобразовать в машинный код. Компилятор начинает читать дерево снизу вверх и составляет список команд:

Компилятор еще раз проверяет команды, находит ошибки и старается улучшить код. При успешном завершении этого этапа, компилятор переводит каждую команду в набор 0 и 1. Наборы записываются в файл, который сможет прочитать и выполнить процессор.

На чем написан компилятор?

В 1950-е годы группа разработчиков IBM под руководством Джона Бэкуса разработала первый высокоуровневый язык программирования Fortran, который позволил писать программы на понятном человеку языке. Помимо языка, инженеры работали и над компилятором. Он представлял собой программу с набором исполняемых команд, которая могла компилировать другие программы на Fortran, в том числе и улучшенную версию себя.

В дальнейшем язык Fortran и его компилятор использовали, чтобы написать компиляторы для новых языков программирования. Такой подход используют программисты и в настоящее время. Писать машинный код долго и неудобно. К тому же, для современных процессоров он может отличаться. Придется писать несколько версий одного и того же компилятора для разных компьютеров. Быстрее и проще написать компилятор на существующем языке программирования. Для этого разработчики выбирают удобный язык и пишут на нем первую версию своего компилятора. Он будет более универсальным для компьютеров и легко скомпилирует улучшенную версию себя. что такое скомпилировать код

Какие бывают компиляторы?

Ни один компилируемый язык программирования не обходится без компилятора. Некоторые компиляторы работают с несколькими языками программирования. Но программист должен учитывать еще и параметры компьютера, на котором программа будет запускаться.

Дело в том, что современные процессоры отличаются друг от друга устройством, поэтому машинный код для одного процессора будет понятен, а для другого нет. Это касается и операционных систем: одна и та же программа будет работать на Windows, но не запустится на Linux или MacOS. Поэтому нужно пользоваться тем компилятором, который работает с нужным процессором и операционной системой.

Если программа будет работать на нескольких операционных системах, то нужен кросс-компилятор — компилятор, который преобразует универсальный машинный код. Например, GNU Compiler Collection(сокращенно GCC) поддерживает C++, Objective-C, Java, Фортран, Ada, Go и поддерживает разную архитектуру процессоров.

Начинающие программисты даже не знают о наличии компилятора на компьютере. Они пишут программы в интегрированной среде разработки, в которую встроен компилятор, а иногда и не один. В этом случае, выбор компилятора делает среда, а не программист. Например, MS Visual Studio поддерживает компиляторы для операционных систем Windows, Linux, Android. Выбирая тип проекта, Visual Studio определяет процессор и операционную систему компьютера, и после этого выбирает подходящий компилятор.

Какие ошибки может определить компилятор?

Когда компилятор анализирует текст программы, он проверяет, соответствует ли запись оператора стандартам языка. Если найдено несоответствие, то компилятор выводит об этом информацию пользователю в виде ошибки. Когда вся программа разобрана, пользователь видит список ошибок, которые есть в коде, и может их исправить. Пока программист не исправит ошибки, компилятор не перейдет к следующему этапу — генерации машинного кода для процессора. Чаще всего компилятор показывает пользователю:

Иногда компилятор определяет код, который при выполнении дает неправильный результат. Но преобразовать такую программу в машинный код все-таки можно. В этом случае компилятор показывает пользователю предупреждение. Такая реакция компилятора больше похожа на рекомендации, но на них стоит обратить внимание. Программист сам решает оставить код с предупреждением или изменить программу. Анализируя текст программы, компилятор не только ищет ошибки, но еще и упрощает ее код. Такой процесс называется оптимизацией. Во время оптимизации компилятор изменяет программный код, но функции, которые выполняла программа, остаются прежними.

Выводы и рекомендации

Компилятор — переводчик между программистом и процессором. Он преобразует текст программы в машинный код, определяет ряд ошибок в программе и оптимизирует ее работу. Выбирая, где компилировать программу, важно помнить о том, что машинный код для процессоров и операционных систем будет разным, и подобрать правильный компилятор. Чем точнее компилятор определит команды, тем корректнее и быстрее будет работать программа. Для этого следуйте простым рекомендациям:

Источник

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

Компилятор

Содержание

Виды компиляторов

Виды компиляции

Структура компилятора

Процесс компиляции состоит из следующих этапов:

В конкретных реализациях компиляторов эти этапы могут быть разделены или, наоборот, совмещены в том или ином виде.

Генерация кода

Генерация машинного кода

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной.

Результат компиляции — исполнимый модуль — обладает максимальной возможной производительностью, однако привязан к определённой операционной системе и процессору (и не будет работать на других).

Для каждой целевой машины (IBM, Apple, Sun и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов инструкций). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения — MMX, SSE и т. п.

Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера (примером может служить PureBasic, транслирующий бейсик-код в ассемблер FASM). Это делается для упрощения части компилятора, отвечающей за кодогенерацию, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции программистом.

Генерация байт-кода

Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без промежуточных этапов.

Динамическая компиляция

Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция, когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и при повторных обращениях к коду исполняется уже скомпилированный вариант).

Декомпиляция

Существуют программы, которые решают обратную задачу — перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а такие программы — декомпиляторами. Но поскольку компиляция — это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах — например, существует довольно надёжный декомпилятор для Adobe Flash. Разновидностью декомпилирования является дизассемблирование машинного кода в код на языке ассемблера, который почти всегда выполняется успешно (при этом сложность может представлять самомодифицирующийся код или код, в котором собственно код и данные не разделены). Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически взаимно-однозначное соответствие.

Раздельная компиляция

Раздельная компиляция (англ. separate compilation ) — трансляция частей программы по отдельности с последующим объединением их компоновщиком в единый загрузочный модуль.

Исторически особенностью компилятора, отражённой в его названии (англ. compile — собирать вместе, составлять), являлось то, что он производил как трансляцию, так и компоновку, при этом компилятор мог порождать сразу машинный код. Однако позже, с ростом сложности и размера программ (и увеличением времени, затрачиваемого на перекомпиляцию), возникла необходимость разделять программы на части и выделять библиотеки, которые можно компилировать независимо друг от друга. При трансляции каждой части программы компилятор порождает объектный модуль, содержащий дополнительную информацию, которая потом, при компоновке частей в исполнимый модуль, используется для связывания и разрешения ссылок между частями.

Появление раздельной компиляции и выделение компоновки как отдельной стадии произошло значительно позже создания компиляторов. В связи с этим вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один).

Интересные факты

На заре развития компьютеров первые компиляторы (трансляторы) называли «программирующими программами» [6] (так как в тот момент программой считался только машинный код, а «программирующая программа» была способна из человеческого текста сделать машинный код, то есть запрограммировать ЭВМ).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *