Большинство аминокислот кодируется более чем одним триплетом

Биология клетки/Часть 1. Клетка как она есть/3/4

Содержание

В последовательности нуклеотидов ДНК закодирована последовательность аминокислот в белках [ править ]

Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.

1 метр), длина всех 23 молекул ДНК гаплоидного набора хромосом)

В ДНК зашифрована информация о первичной структуре белков посредством комбинации нуклеотидов. Процесс «переписывания» этого кода с ДНК в молекулы РНК называется транскрипцией, а синтез белка в рибосомах по матрице иРНК, в ходе которого происходит «перевод» нуклеотидного кода в последовательность аминокислот — трансляцией.

Генетический код ДНК состоит из триплетов, то есть из тройных комбинаций нуклеотидов. При транскрипции генетический код «переписывается» в последовательность нуклеотидов иРНК. Тройки нуклеотидов иРНК, кодирующие аминокислоты, называются кодонами. Из 64 возможных триплетов (4³) 61 являются смысловым кодонами, то есть кодируют аминокислоты. Все кодоны триплетны, неразрывны и не перекрываются в тексте (как считалось по одной из гипотез), а также не разделены межкодонными знаками. Все кодоны однозначны, то есть каждый кодон кодирует единственную аминокислоту.

Генетический код содержит в себе также знаки пунктуации (начала и конца трансляции). Кодоны AUG, GUG и UUG у прокариот помимо кодирования аминокислот кодируют ещё и команду начала трансляции. Однако однозначность генетического кода при этом не нарушается, так как инициирующие знаки располагаются в определенном окружении (контексте), способном образовывать самокомплементарные субъединицы. У эукариот инициирующими триплетами являются AUG, UUG, AUA и ACG. Три кодона из 64 (UGA, UAG, UAA) не кодируют аминокислот, а служат знаками окончания трансляции (стоп-кодоны). Обычно ими заканчиваются все транслируемые гены. Возникновение в результате мутации нонсенс-кодонов внутри гена приводит к преждевременной терминации трансляции и прекращению синтеза белка.

Расшифровке генетического кода помог синтез искусственных РНК [ править ]

В1953 году Фрэнсис Крик совместно с Джеймсом Уотсоном сделал предположение, что только 20 кодонов генетического кода имеют значение, а остальные 44 триплета являются бессмысленными. В 1961 Ф. Крик с сотрудниками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых.

Расшифровать генетический код удалось in vitro, благодаря технике белкового синтеза в бесклеточных системах, то есть в клеточных экстрактах, содержащих все необходимые компоненты аппарата трансляции (тРНК, иРНК, рибосомы, аминокислоты, ферменты, источник энергии (АТФ и ГТФ), а также вспомогательные компоненты), за исключением только принадлежащий клетке мРНК. Вводя в такие экстракты искусственно синтезированные мРНК, можно было изучать включения меченых аминокислот в строящиеся белки. М. Ниренберг и Ф. Ледер провели опыт по помещению в бесклеточную систему трансляции различных олигорибонуклеотидов и выявили, что конкретные тририбонуклеотиды, ассоциированные с рибосомами, связывают только определенные фракции тРНК, с определенными мечеными аминокислотами. Например, олигорибонуклеотид УУУ связывает тРНК, имеющую антикодон ААА и несущую аминокислоту фенилаланин. Следовательно, кодон мРНК УУУ кодирует аминокислоту фенилаланин. С помощью такого метода к 1965 году генетический код был расшифрован полностью.

Летом 1966 года на симпозиуме по количественной биологии в Колд-Спринг-Харборе (США) все полученные данные были систематизированы Ф. Криком. Расшифрованный генетический код E. coli, исследованный методом in vitro, полностью согласовывался также с другими независимыми данными, полученными методом in vivo для других видов.

Основные свойства генетического кода одинаковы у всех живых организмов [ править ]

Генетический код — способ кодирования последовательностью нуклеотидов в ДНК аминокислотной последовательности белков. Для генетического кода характерны следующие свойства (см. следующие разделы):

подряд, без пропусков

Генные знаки препинания Участок ДНК, кодирующий одну полипептидную цепь или одну молекулу РНК, называется геном. После каждого кодирующего белок участка гена находится стоп-кодон, регулирующий трансляцию. К таким «знакам препинания» относятся и стоп-кодоны UAA, UAG и UGA. Эти сигналы опознаёт рибосома, но не РНК_полимераза — для неё на ДНК есть свои «стоп-сигналы», состоящие более чем из трех нуклеотидов.

Кодон AUG (первый после лидерной последовательности) выполняет роль «заглавной буквы», то есть кодирует метионин (у эукариот) или формилметионин (у прокариот), с которого начинается образование полипептидной цепи в процессе трансляции.

Кодоны UAA (охра, или Ochre), UAG (амбер-кодон, или Amber) и UGA (опал, или Opal) являются терминаторными кодонами и кодируют прекращение (терминацию) синтеза полипептиднойцепи трансляции.

Если AUG — «заглавная буква», стоп-кодоны — «точки», то с «абзацем» можно сравнить оперон и комплементарная ему мРНК, присутствующие только в прокариотической клетке. Оперон — участок ДНК бактерии, отвечающий за отдельный участок метаболического пути. Он кодирует совместно или последовательно работающие белки, объединенные под одним (или несколькими) промоторами.

У эукариот внутригенные стоп-кодоны и иные «знаки препинания» отсутствуют, что было экспериментально доказано Сеймуром Бензером и Фрэнсисом Криком в 1961 году. У прокариот с оперона часто считывается одна молекула полицистронной мРНК. В её нуклеотидной последовательности есть несколько стоп-кодонов, а между ними — рамки считывания для нескольких полипептидных цепочек. При трансляции прокариотическая рибосома «перепрыгивает» стоп-кодоны и продолжает синтез следующего белка, а синтезированная полипептидная цепь при этом отделяется от рибосомы.

Генетический код триплетный [ править ]

Генетический код неперекрывающийся [ править ]

В 1956 году американский ученый Джордж Гамов высказал предположение о перекрываемости генетического кода. Оно заключается в следующем: предположим, у нас есть следующая последовательность нуклеотидов: УУАГУААЦГУАА

В этой последовательности могут действовать кодоны

Плюс перекрываемого кода — компактность (недаром это свойство обнаружено у некоторых генов вирусов). Минус — явная зависимость структуры белка от замены нуклеотида.

После расшифровки генетического кода было показано, что он неперыкрывающийся, то есть в последовательности нуклеотидов УУАГУААЦГУАА действуют только кодоны УУА ГУА АЦГ УАА.

Как правило, для каждого гена существует одна открытая рамка считывания.

Генетический код непрерывный [ править ]

У бактерий многие иРНК полицистронные. Они кодируют несколько полипептидных цепей, и кодирующие их последовательности разделены стоп-кодонами. При трансляции бактериальная рибосома «перескакивает» стоп-кодоны, сразу же начиная синтез следующей полипептидной цепи; белок, синтез которого закончился, при этом отделяется от рибосомы.

Генетический код вырожденный [ править ]

В 1954 году американский ученый Джордж Гамов высказал предположение о кодировании одним кодоном одной аминокислоты, но это предположение оказалось неверным. Так как триплет состоит из трёх последовательных нуклеотидов, а всего этих нуклеотидов четыре различных, возможных триплетов может быть 4 ³=64 (кроме стоп-кодонов UAA, UAG и UGA, так что не 64, а 61), что превышает количество существующих аминокислот. В связи с этим было высказано предположение, подтвердившееся в дальнейшем, о так называемой вырожденности генетического кода — одну аминокислоту кодирует больше одного триплета, за исключением метионина и триптофана.

Отдельные аминокислоты кодируются группами (сериями) кодонов-синонимов. 18 серий из 20 содержат от двух до шести кодонов, две серии (для аминокислот метионина и триптофана) не вырождены и содержат по одному кодону. Средняя вырожденность генетического кода приблизительно равна трём кодонам на серию.

Вырожденность называется систематической, если синонимичные кодоны различаются либо пуринами, либо пиримидинами, либо вообще любыми из четырех своих нуклеотидов. Этим принципам удовлетворяют только 30 пар кодонов из 32 возможных, а также только восемь тетрад из 16. Остальные же варианты вырожденности называются несистематическими. Они относятся, как правило, к большим сериям: лейцин и аргинин — связные серии, серин — несвязная серия, изолейцин, кодируемый в три кодона — полносвязная серия.

Генетический код однозначный [ править ]

Единственный известный на сегодняшний день пример, когда это свойство нарушается — использование кодона UGA у инфузории Euplotes crassus. В зависимости от окружения он кодирует две аминокислоты — цистеин и селеноцистеин [1].

Генетический код универсальный [ править ]

Универсальность генетического кода означает использование всеми живыми организмами одного генетического кода, то есть все живые существа используют одинаковые наборы кодонов для кодирования одних и тех же аминокислот.

Источник

ТОМ 3

Часть IV ИНФОРМАЦИЯ

ГЛАВА 26. ГЕНЕТИЧЕСКИЙ КОД Т ЗАВИСИМОСТЬ МЕЖДУ ГЕНАМИ И БЕЛКАМИ

26.2. Аминокислоты кодируются группами из трех оснований, начиная со строго определенной точки

Генетический код связывает последовательность оснований в ДНК (или в соответствующих транскриптах) и последовательность аминокислот в белках. К 1961 г. благодаря экспериментам Фрэнсиса Крика, Сиднея Бреннера (Francis Crick, Sydney Brenner) и других исследователей были установлены следующие свойства генетического кода.

2. Является ли код перекрывающимся? В случае непрерывающегося триплетного кода каждая группа из трех оснований ко-

дирует только одну аминокислоту, тогда как в случае полностью перекрывающегося триплетного кода АБВ кодирует первую аминокислоту, БВГ-вторую, ВГД-третью и т.д.

Эту дилемму удалось решить путем определения последовательности аминокислот в мутантах. Предположим, что основание В мутировало в В’. Если код не перекрывается, изменится только одна аминокислота. При полностью перекрывающемся коде мутация В в В’ приведет к изменению аминокислот 1, 2 и 3. Изучение последовательности аминокислот белка оболочки мутантов вируса табачной мозаики показало, что у этих мутантов измененной обычно оказывалась только одна аминокислота. Напомним также, что как уже говорилось при обсуждении аномальных гемоглобинов в гл. 5, и в этом случае у большинства мутантов происходило изменение только одной аминокислоты. Отсюда был сделан вывод, что генетический код не перекрывается:

Большинство аминокислот кодируется более чем одним триплетом

3. Как происходит правильное считывание группы из трех оснований? A priori одна из возможностей состоит в том, что одно из четырех оснований (оно обозначено Q) служит «запятой» между группами по три основания:

Оказалось, что это не так. Последовательность оснований читается последовательно, начиная со строго определенной точки:

Большинство аминокислот кодируется более чем одним триплетом

Запятых в коде нет. Предположим, что в результате мутации произошла делеция основания Ж:

Большинство аминокислот кодируется более чем одним триплетом

Первые две аминокислоты в этой полипептидной цепи будут нормальными, но остальная последовательность оснований будет прочитана неправильно, так как в результате делеции Ж произошел сдвиг рамки считывания. Теперь предположим, что между Е и Ж добавилось основание Ш:

Большинство аминокислот кодируется более чем одним триплетом

Эта вставочная мутация также нарушает рамку считывания, начиная с кодона аминокислоты 3. В действительности генетические исследования вставочных и делеционных мутантов позволили выяснить многие свойства генетического кода.

4. Как уже было сказано выше, существует 64 возможных триплета оснований и 20 аминокислот. Соответствует ли каждой из 20 аминокислот только один триплет, или некоторые аминокислоты кодируются более чем одним триплетом? Генетические исследования показали, что большинство из 64 триплетов кодируют аминокислоты. В последующих биохимических исследованиях было установлено, что 61 триплет из 64 кодирует определенные аминокислоты. Таким образом, для большинства аминокислот имеется более одного кодового слова. Другими словами, генетический код вырожден.

26.3. Расшифровка генетического кода: синтетические РНК могут служить информационными РНК

Каково соотношение между 64 видами кодовых слов и 20 аминокислотами? В принципе на этот вопрос можно получить прямой ответ, если сравнить последовательность аминокислот в каком-либо белке с соответствующей последовательностью оснований его гена или мРНК. Однако в 1961 г. этот подход был совершенно недоступен, так как о последовательностях оснований в генах и молекулах мРНК ничего не было известно. Тогда казалось, что проблема генетического кода не может быть решена в близком будущем, но внезапно ситуация изменилась. Маршалл Ниренберг (Marshall Nirenberg) обнаружил, что добавление полиуридилата [poly(U)] в бесклеточную систему синтеза белка приводит к синтезу полифенилаланина. Очевидно, poly(U) выполнил функцию информационной РНК. Первое кодовое слово было расшифровано: UUU кодирует фенилаланин. Этот замечательный эксперимент указал путь к полной расшифровке генетического кода.

Обсудим более подробно этот эпохальный эксперимент. В качестве двух основных компонентов были использованы бесклеточная система, активно синтезировавшая белок, и синтетический полирибо- нуклеотид, сыгравший роль информационной РНК. Бесклеточная система синтеза белка была получена из Е. coli следующим образом. Бактериальные клетки осторожно разрушали, перемалывая с тонко измельченным порошком окиси алюминия, чтобы получить клеточный сок. Затем обрывки клеточной стенки и клеточной мембраны удаляли центрифугированием. В результате получали экстракт, содержащий ДНК, мРНК, тРНК, рибосомы, ферменты и другие клеточные компоненты. При добавлении ATP, GTP и аминокислот в этой бесклеточной системе синтезировался белок. По крайней мере одна из добавленных аминокислот была радиоактивной, что давало возможность обнаружить ее включение в белок. Эту смесь инкубировали при 37°С примерно в течение 1 ч. Затем добавляли трихлоруксусную кислоту, чтобы остановить реакцию и осадить белки. При этом свободные аминокислоты оставались в надосадочной фракции. Осадок промывали и просчитывали его радиоактивность, определяя таким образом сколько меченой аминокислоты включилось в новосинтезированный белок. Важная особенность этой системы состоит в том, что синтез белка можно остановить добавлением дезоксирибонуклеазы, разрушающей матрицы для синтеза новых мРНК. Поскольку та мРНК, которая уже имелась в смеси ко времени добавления дезоксирибонуклеазы, лабильна, синтез белка можно прекратить в течение нескольких минут. Затем Нирен- берг обнаружил, что синтез белка возобновляется при добавлении неочищенной фракции мРНК. Таким образом, в руках Ниренберга была бесклеточная система синтеза белка, зависящая от добавления мРНК.

(РНК)n + Рибонуклеозиддифосфат ⇄ (РНК)n+1 + Рi

Рис. 26.3. Синтез белка в бесклеточной системе останавливается через несколько минут после добавления дезоксирибонуклеазы и возобновляется при добавлении мРНК

Большинство аминокислот кодируется более чем одним триплетом

Различные синтетические рибонуклеотиды вводили в бесклеточную систему синтеза белка и измеряли включение меченного 14 С L-фенилаланина. Результаты оказались поразительными:

Большинство аминокислот кодируется более чем одним триплетом

Большинство аминокислот кодируется более чем одним триплетом

Кодовое слово GGG невозможно было расшифровать таким же образом, потому что poly (G) не работает в качестве матрицы. Возможно, это объясняется тем, что он образует трехцепочечную спиральную структуру. Полирибонуклеотиды, образующие протяженные участки с упорядоченной структурой, не эффективны в качестве матриц для синтеза белка.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2018-2021 Все права на дизайн сайта принадлежат С.Є.А.

Источник

Большинство аминокислот кодируется более чем одним триплетом

У вас должно быть как минимум два образования, чтобы пройти этот тест хотя бы на 9/12

Тест на общие знания, который на 11/11 осилит лишь настоящий эрудит

Никто не может ответить больше чем на 7 из 10 вопросов в этом тесте на IQ

Что вас ждет в старости?

Тест Роршаха расскажет, что сейчас творится у вас в голове

Хватит ли вам фоновых знаний, чтобы ответить на рандомные вопросы из разных областей?

Если вы ответите верно на все наши каверзные вопросы, то точно не зря получали высшее образование

Тест на общие знания: Просвещены ли вы настолько, чтобы пройти его на все 10/10?

Сможете ли вы пройти тест для разведчиков?

Тест, который покажет, каким животным вы являетесь в душе.

Если в этом тесте вы наберете 13/13, то вам пора поступать в Гарвард

Тест по советским фильмам: Кто из актеров сказал эти известные всем слова?

Тест на кругозор. Хватит ли вам эрудиции, чтобы пройти его 10/10?

Сможете ли вы узнать советских актеров по фото в молодости?

Каков Ваш психологический возраст?

В чём ваш мозг крут

Большой тест на интеллект: узнай свой процент знаний

Непростой тест на общие знания: Пройдете его хотя бы на 7/10?

Не называйте себя эрудированным человеком, если не сможете набрать в этом тесте хотя бы 8/10

Простейший тест на IQ из нескольких вопросов

Подписывайтесь на наши странички! Обязательно делитесь с друзьями! Впереди много новых интересных тестов! Ежедневные добавления! Страницы: Яндекс Дзен, ВКонтакте, Одноклассники, Facebook

Популярные тесты

У вас должно быть как минимум два образования, чтобы пройти этот тест хотя бы на 9/12

Тест на общие знания, который на 11/11 осилит лишь настоящий эрудит

Никто не может ответить больше чем на 7 из 10 вопросов в этом тесте на IQ

Что вас ждет в старости?

Тест Роршаха расскажет, что сейчас творится у вас в голове

Хватит ли вам фоновых знаний, чтобы ответить на рандомные вопросы из разных областей?

Если вы ответите верно на все наши каверзные вопросы, то точно не зря получали высшее образование

Тест на общие знания: Просвещены ли вы настолько, чтобы пройти его на все 10/10?

Сможете ли вы пройти тест для разведчиков?

Тест, который покажет, каким животным вы являетесь в душе.

Если в этом тесте вы наберете 13/13, то вам пора поступать в Гарвард

Тест по советским фильмам: Кто из актеров сказал эти известные всем слова?

Тест на кругозор. Хватит ли вам эрудиции, чтобы пройти его 10/10?

Сможете ли вы узнать советских актеров по фото в молодости?

Каков Ваш психологический возраст?

В чём ваш мозг крут

Большой тест на интеллект: узнай свой процент знаний

Непростой тест на общие знания: Пройдете его хотя бы на 7/10?

Не называйте себя эрудированным человеком, если не сможете набрать в этом тесте хотя бы 8/10

Простейший тест на IQ из нескольких вопросов

Преимущества

Можете встраивать тесты на Ваш сайт. Тест показывается нашем и других сайтах. Гибкие настройки результатов. Возможность поделиться тестом и результатами. Лавинообразный («вирусный») трафик на тест. Русскоязычная аудитория. Без рекламы!

Пользователям

Вам захотелось отдохнуть? Или просто приятно провести время? Выбирайте и проходите онлайн-тесты, делитесь результатом с друзьями. Проверьте, смогут они пройти также как Вы, или может лучше?

Внимание! Наши тесты не претендуют на достоверность – не стоит относиться к ним слишком серьезно!

Источник

Биология. 11 класс

§ 23. Генетический код и его свойства

Как вы знаете, признаки и свойства каждого организма определяются прежде всего белками, которые синтезируются в его клетках. Белки выполняют самые разнообразные функции (вспомните какие), обеспечивая тем самым протекание процессов жизнедеятельности. Можно сказать, что именно от этих биополимеров в первую очередь и зависит существование организма. Однако время функционирования белков, как и многих других биомолекул, весьма ограничено. Поэтому синтез белков в организме должен осуществляться непрерывно. Этот процесс протекает во всех клетках одноклеточных и многоклеточных организмов.

Вам также известно, что хранителем наследственной (генетической) информации, т. е. информации о первичной структуре белков, является ДНК. Участок молекулы ДНК, содержащий информацию о первичной структуре одного белка, получил название ген. Кроме того, генами называют участки ДНК, хранящие информацию о строении молекул рРНК и тРНК.

В биосинтезе белков, который осуществляется в рибосомах, ДНК прямого участия не принимает. Передача генетической информации, содержащейся в ДНК, к месту синтеза белка происходит с помощью посредника. Этим посредником является матричная (информационная) РНК (мРНК, иРНК), которая синтезируется на одной из цепей молекулы ДНК по принципу комплементарности.

В молекулах ДНК и мРНК информация о первичной структуре белков «записана» в виде последовательности нуклеотидов. Сами же белки синтезируются из аминокислот. Значит, в природе существует особая система кодирования, на основании которой последовательность нуклеотидов расшифровывается в виде последовательности аминокислот молекул белков. Этот «шифр» называется генетическим кодом. Таким образом, генетический код — это система записи информации о первичной структуре белков в виде последовательности нуклеотидов ДНК (мРНК).

Генетический код обладает следующими свойствами.

1. Код является триплетным. Это значит, что каждая аминокислота кодируется триплетом (кодоном) — сочетанием трех последовательно расположенных нуклеотидов. В состав молекул ДНК и РНК входит по 4 типа нуклеотидов. Если бы за определенную аминокислоту «отвечал» один нуклеотид, можно было бы закодировать только 4 из 20 белокобразующих аминокислот. Дублетов (по два нуклеотида) хватило бы лишь на 4 2 = 16 аминокислот. Количество возможных триплетов (сочетаний трех нуклеотидов) составляет 4 3 = 64. Этого с избытком хватает для кодирования всех 20 видов аминокислот (табл. 23.1).

Большинство аминокислот кодируется более чем одним триплетом

Обратите внимание, что 3 из 64 кодонов (в молекулах мРНК — УАА, УАГ и УГА) не кодируют аминокислоты. Это так называемые стоп-кодоны *или нонсенс-кодоны (от англ. nonsense — бессмыслица)*, они служат сигналом окончания синтеза белка. *Остальные триплеты называются смысловыми.*

* Генетический код расшифровали американские биохимики Р. Холли, Х. Г. Корана и М. Ниренберг в середине прошлого века. Работа стартовала в 1961 г. В бесклеточные системы, содержащие все необходимые компоненты для синтеза белка (рибосомы, аминокислоты, тРНК и др.), ученые сначала вводили искусственно синтезированные мРНК, состоящие только из одного типа нуклеотидов. Было выяснено, что в присутствии, например, полицитидиловой мРНК (ЦЦЦЦЦЦ. ) синтезируется полипептид, состоящий только из остатков аминокислоты пролина, в присутствии полиуридиловой (УУУУУУ. ) — из фенилаланина. Стало понятно, что кодону ЦЦЦ соответствует пролин, а триплет УУУ кодирует фенилаланин. К 1965 г., благодаря использованию искусственно синтезированных молекул мРНК с известными повторяющимися последовательностями нуклеотидов, удалось расшифровать все остальные триплеты. В 1968 г. это открытие было удостоено Нобелевской премии.*

2. Код однозначен — каждый триплет кодирует только одну аминокислоту.

3. Как уже отмечалось, число триплетов превышает количество кодируемых аминокислот. Поэтому генетический код является избыточным (вырожденным) — одна и та же аминокислота может кодироваться разными триплетами. Например, в мРНК цистеин (Цис) может быть закодирован триплетом УГУ или УГЦ, треонин (Тре) — АЦУ, АЦЦ, АЦА или АЦГ. Некоторые аминокислоты, например лейцин (Лей), кодируются шестью различными триплетами, в то же время метионину (Мет) и триптофану (Трп) соответствует только по одному кодону (проверьте по таблице генетического кода).

4. Код не перекрывается — один и тот же нуклеотид не может одновременно входить в состав двух соседних триплетов.

5. Код непрерывен. В полинуклеотидной цепи нуклеотиды располагаются непрерывно и соседние триплеты ничем не отделены друг от друга. Это значит, что фактически деление на триплеты условно — все зависит от того, с какого именно нуклеотида начинается их считывание. Поэтому в клетках считывание информации, содержащейся в генах, всегда начинается со строго определенного нуклеотида.

Если в составе гена происходит изменение количества нуклеотидов (их выпадение или вставка) на число, не кратное трем, наблюдается так называемый сдвиг рамки считывания (рис. 23.1). Это прив одит к существенному изменению последовательности аминокислот в белке, который кодируется измененным геном. В некоторых случаях сдвиг рамки считывания приводит к возникновению стоп-кодонов, из-за чего синтез белка обрывается.

*Суть происходящего при сдвиге рамки считывания можно понять на следующем примере. Прочитайте предложение, составленное из трехбуквенных слов (аналогично триплетам):

ЖИЛ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ.

В этом предложении заключен определенный смысл, понять который можно и без знаков препинания. Выпадение одной буквы аналогично выпадению одного нуклеотида. Оно приводит к изменению порядка считывания и потере смысла:

ЖЛБ ЫЛК ОТТ ИХБ ЫЛС ЕРМ ИЛМ НЕТ ОТК ОТ — выпадение второй буквы.

То же самое произошло бы и после вставки лишней буквы. В случае замены одной буквы либо при изменении их количества на три смысл предложения меняется не столь значительно. Например:

ЖИВ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — замена третьей буквы;

БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — выпадение первых трех букв.

Однако смысл предложения (в нашей аналогии — первичная структура белка) во многом зависит от положения измененных букв (нуклеотидов). Так, смысл может существенно исказиться:

ЖИЛ БОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — выпадение пятой, шестой и седьмой букв.

Аналогичная ситуация наблюдается и с белками. В зависимости от расположения замененной (утраченной, добавленной) аминокислоты молекула белка может сохранить пространственную конфигурацию и функции, частично изменить их или же полностью утратить свои исходные характеристики.*

Как уже отмечалось, правильное считывание генетической информации обеспечивается только тогда, когда оно начинается со строго определенной позиции. У эукариот стартовым кодоном молекулы мРНК является триплет АУГ. Именно с него и начинается считывание.

6. Код универсален — у всех живых организмов одним и тем же триплетам соответствуют одни и те же аминокислоты. Иными словами, у всех организмов генетический код расшифровывается одинаково (за редким исключением). Это свидетельствует о единстве происхождения живых организмов.

*Некоторые вариации генетического кода обнаружены у бактерий, инфузорий, дрожжей, в коде митохондриальной ДНК и т. д. Например, у бактерий триплет мРНК ГУГ может играть роль стартового кодона, а у эукариот он предназначен только для кодирования аминокислоты валин. В митохондриях млекопитающих триплет УГА кодирует триптофан, в то время как в матричной РНК, синтезированной в ядре клетки, он служит стоп-кодоном. И наоборот, в коде митохондрий триплеты АГА и АГГ являются сигналами окончания синтеза белка, а в «основной версии» генетического кода им соответствует аминокислота аргинин.*

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *