асинхронное выполнение кода python
Асинхронное программирование в Python
Асинхронное программирование на Python становится все более популярным. Для этих целей существует множество различных библиотек. Самая популярная из них — Asyncio, которая является стандартной библиотекой Python 3.4. Из этой статьи вы узнаете, что такое асинхронное программирование и чем отличаются различные библиотеки, реализующие асинхронность в Python.
По очереди
В каждой программе строки кода выполняются поочередно. Например, если у вас есть строка кода, которая запрашивает что-либо с сервера, то это означает, что ваша программа не делает ничего во время ожидания ответа. В некоторых случаях это допустимо, но во многих — нет. Одним из решений этой проблемы являются потоки (threads).
Потоки дают возможность вашей программе выполнять ряд задач одновременно. Конечно, у потоков есть ряд недостатков. Многопоточные программы являются более сложными и, как правило, более подвержены ошибкам. Они включают в себя такие проблемы: состояние гонки (race condition), взаимная (deadlock) и активная (livelock) блокировка, исчерпание ресурсов (resource starvation).
Переключение контекста
Хотя асинхронное программирование и позволяет обойти проблемные места потоков, оно было разработано для совершенно другой цели — для переключения контекста процессора. Когда у вас есть несколько потоков, каждое ядро процессора может запускать только один поток за раз. Для того, чтобы все потоки/процессы могли совместно использовать ресурсы, процессор очень часто переключает контекст. Чтобы упростить работу, процессор с произвольной периодичностью сохраняет всю контекстную информацию потока и переключается на другой поток.
Асинхронное программирование — это потоковая обработка программного обеспечения / пользовательского пространства, где приложение, а не процессор, управляет потоками и переключением контекста. В асинхронном программировании контекст переключается только в заданных точках переключения, а не с периодичностью, определенной CPU.
Эффективный секретарь
Теперь давайте рассмотрим эти понятия на примерах из жизни. Представьте секретаря, который настолько эффективен, что не тратит время впустую. У него есть пять заданий, которые он выполняет одновременно: отвечает на телефонные звонки, принимает посетителей, пытается забронировать билеты на самолет, контролирует графики встреч и заполняет документы. Теперь представьте, что такие задачи, как контроль графиков встреч, прием телефонных звонков и посетителей, повторяются не часто и распределены во времени. Таким образом, большую часть времени секретарь разговаривает по телефону с авиакомпанией, заполняя при этом документы. Это легко представить. Когда поступит телефонный звонок, он поставит разговор с авиакомпанией на паузу, ответит на звонок, а затем вернется к разговору с авиакомпанией. В любое время, когда новая задача потребует внимания секретаря, заполнение документов будет отложено, поскольку оно не критично. Секретарь, выполняющий несколько задач одновременно, переключает контекст в нужное ему время. Он асинхронный.
Потоки — это пять секретарей, у каждого из которых по одной задаче, но только одному из них разрешено работать в определенный момент времени. Для того, чтобы секретари работали в потоковом режиме, необходимо устройство, которое контролирует их работу, но ничего не понимает в самих задачах. Поскольку устройство не понимает характер задач, оно постоянно переключалось бы между пятью секретарями, даже если трое из них сидят, ничего не делая. Около 57% (чуть меньше, чем 3/5) переключения контекста были бы напрасны. Несмотря на то, что переключение контекста процессора является невероятно быстрым, оно все равно отнимает время и ресурсы процессора.
Зеленые потоки
Зеленые потоки (green threads) являются примитивным уровнем асинхронного программирования. Зеленый поток — это обычный поток, за исключением того, что переключения между потоками производятся в коде приложения, а не в процессоре. Gevent — известная Python-библиотека для использования зеленых потоков. Gevent — это зеленые потоки и сетевая библиотека неблокирующего ввода-вывода Eventlet. Gevent.monkey изменяет поведение стандартных библиотек Python таким образом, что они позволяют выполнять неблокирующие операции ввода-вывода. Вот пример использования Gevent для одновременного обращения к нескольким URL-адресам:
Как видите, API-интерфейс Gevent выглядит так же, как и потоки. Однако за кадром он использует сопрограммы (coroutines), а не потоки, и запускает их в цикле событий (event loop) для постановки в очередь. Это значит, что вы получаете преимущества потоков, без понимания сопрограмм, но вы не избавляетесь от проблем, связанных с потоками. Gevent — хорошая библиотека, но только для тех, кто понимает, как работают потоки.
Старт 25 сентября, 2 месяца, Онлайн, Беcплатно
Давайте рассмотрим некоторые аспекты асинхронного программирования. Один из таких аспектов — это цикл событий. Цикл событий — это очередь событий/заданий и цикл, который вытягивает задания из очереди и запускает их. Эти задания называются сопрограммами. Они представляют собой небольшой набор команд, содержащих, помимо прочего, инструкции о том, какие события при необходимости нужно возвращать в очередь.
Функция обратного вызова (callback)
В Python много библиотек для асинхронного программирования, наиболее популярными являются Tornado, Asyncio и Gevent. Давайте посмотрим, как работает Tornado. Он использует стиль обратного вызова (callbacks) для асинхронного сетевого ввода-вывода. Обратный вызов — это функция, которая означает: «Как только это будет сделано, выполните эту функцию». Другими словами, вы звоните в службу поддержки и оставляете свой номер, чтобы они, когда будут доступны, перезвонили, вместо того, чтобы ждать их ответа.
Давайте посмотрим, как сделать то же самое, что и выше, используя Tornado:
В примере вы можете заметить, что первая строка функции handle_response проверяет наличие ошибки. Это необходимо, потому что невозможно обработать исключение. Если исключение было создано, то оно не будет отрабатываться в коде из-за цикла событий. Когда fetch выполняется, он запускает HTTP-запрос, а затем обрабатывает ответ в цикле событий. К тому моменту, когда возникнет ошибка, стек вызовов будет содержать только цикл событий и текущую функцию, при этом нигде в коде не сработает исключение. Таким образом, любые исключения, созданные в функции обратного вызова, прерывают цикл событий и останавливают выполнение программы. Поэтому все ошибки должны быть переданы как объекты, а не обработаны в виде исключений. Это означает, что если вы не проверили наличие ошибок, то они не будут обрабатываться.
Другая проблема с обратными вызовами заключается в том, что в асинхронном программировании единственный способ избегать блокировок — это обратный вызов. Это может привести к очень длинной цепочке: обратный вызов после обратного вызова после обратного вызова. Поскольку теряется доступ к стеку и переменным, вы в конечном итоге переносите большие объекты во все ваши обратные вызовы, но если вы используете сторонние API-интерфейсы, то не можете передать что-либо в обратный вызов, если он этого не может принять. Это также становится проблемой, потому что каждый обратный вызов действует как поток. Например, вы хотели бы вызвать три API-интерфейса и дождаться, пока все три вернут результат, чтобы его обобщить. В Gevent вы можете это сделать, но не с обратными вызовами. Вам придется немного поколдовать, сохраняя результат в глобальной переменной и проверяя в обратном вызове, является ли результат окончательным.
Сравнения
Если вы хотите предотвратить блокировку ввода-вывода, вы должны использовать либо потоки, либо асинхронность. В Python вы выбираете между зелеными потоками и асинхронным обратным вызовом. Вот некоторые из их особенностей:
Зеленые потоки
Обратный вызов
Как решить эти проблемы?
Прим. перев. В примерах используется aiohttp версии 1.3.5. В последней версии библиотеки синтаксис другой.
Несколько особенностей, которые нужно отметить:
Единственная проблема заключается в том, что объект выглядит как генератор, и это может вызвать проблемы, если на самом деле это был генератор.
Async и Await
Заключение
В Python встроена отличная асинхронная библиотека. Давайте еще раз вспомним проблемы потоков и посмотрим, решены ли они теперь:
Несмотря на то, что Asyncio довольно хорош, у него есть и проблемы. Во-первых, Asyncio был добавлен в Python недавно. Есть некоторые недоработки, которые еще не исправлены. Во-вторых, когда вы используете асинхронность, это значит, что весь ваш код должен быть асинхронным. Это связано с тем, что выполнение асинхронных функций может занимать слишком много времени, тем самым блокируя цикл событий.
Существует несколько вариантов асинхронного программирования в Python. Вы можете использовать зеленые потоки, обратные вызовы или сопрограммы. Хотя вариантов много, лучший из них — Asyncio. Если используете Python 3.5, то вам лучше использовать эту библиотеку, так как она встроена в ядро python.
Асинхронное программирование в Python: краткий обзор
Когда говорят о выполнении программ, то под «асинхронным выполнением» понимают такую ситуацию, когда программа не ждёт завершения некоего процесса, а продолжает работу независимо от него. В качестве примера асинхронного программирования можно привести утилиту, которая, работая асинхронно, делает записи в лог-файл. Хотя такая утилита и может дать сбой (например, из-за нехватки свободного места на диске), в большинстве случаев она будет работать правильно и ей можно будет пользоваться в различных программах. Они смогут её вызывать, передавая ей данные для записи, а после этого смогут продолжать заниматься своими делами.
Применение асинхронных механизмов при написании некоей программы означает, что эта программа будет выполняться быстрее, чем без использования подобных механизмов. При этом то, что планируется запускать асинхронно, вроде утилиты для логирования, должно быть написано с учётом возникновения нештатных ситуаций. Например, утилита для логирования, если место на диске закончилось, может просто прекратить логирование, а не «обваливать» ошибкой основную программу.
Выполнение асинхронного кода обычно подразумевает работу такого кода в отдельном потоке. Это — если речь идёт о системе с одноядерным процессором. В системах с многоядерными процессорами подобный код вполне может выполняться процессом, пользующимся отдельным ядром. Одноядерный процессор в некий момент времени может считывать и выполнять лишь одну инструкцию. Это напоминает чтение книг. Нельзя читать две книги одновременно.
Если вы читаете книгу, а кто-то даёт вам ещё одну книгу, вы можете взять эту вторую книгу и приступить к её чтению. Но первую придётся отложить. По такому же принципу устроено и многопоточное выполнение кода. А если бы несколько ваших копий читало бы сразу несколько книг, то это было бы похоже на то, как работают многопроцессорные системы.
Если на одноядерном процессоре очень быстро переключаться между задачами, требующими разной вычислительной мощности (например — между некими вычислениями и чтением данных с диска), тогда может возникнуть такое ощущение, что единственное процессорное ядро одновременно делает несколько дел. Или, скажем, подобное происходит в том случае, если попытаться открыть в браузере сразу несколько сайтов. Если для загрузки каждой из страниц браузер использует отдельный поток — тогда всё будет сделано гораздо быстрее, чем если бы эти страницы загружались бы по одной. Загрузка страницы — не такая уж и сложная задача, она не использует ресурсы системы по максимуму, в результате одновременный запуск нескольких таких задач оказывается весьма эффективным ходом.
Асинхронное программирование в Python
Изначально в Python для решения задач асинхронного программирования использовались корутины, основанные на генераторах. Потом, в Python 3.4, появился модуль asyncio (иногда его название записывают как async IO ), в котором реализованы механизмы асинхронного программирования. В Python 3.5 появилась конструкция async/await.
Для того чтобы заниматься асинхронной разработкой на Python, нужно разобраться с парой понятий. Это — корутины (coroutine) и задачи (task).
Корутины
Обычно корутина — это асинхронная (async) функция. Корутина может быть и объектом, возвращённым из корутины-функции.
Если при объявлении функции указано то, что она является асинхронной, то вызывать её можно с использованием ключевого слова await :
Такая конструкция означает, что программа будет выполняться до тех пор, пока не встретит await-выражение, после чего вызовет функцию и приостановит своё выполнение до тех пор, пока работа вызванной функции не завершится. После этого возможность запуститься появится и у других корутин.
Задачи
Задачи позволяют запускать корутины в цикле событий. Это упрощает управление выполнением нескольких корутин. Вот пример, в котором используются корутины и задачи. Обратите внимание на то, что сущности, объявленные с помощью конструкции async def — это корутины. Этот пример взят из официальной документации Python.
Если запустить код примера, то на экран будет выведен текст, подобный следующему:
Обратите внимание на то, что отметки времени в первой и последней строках отличаются на 2 секунды. Если же запустить этот пример с последовательным вызовом корутин, то разница между отметками времени составит уже 3 секунды.
Пример
Итоги
Существуют ситуации, в которых использование задач и корутин оказывается весьма полезным Например, если в программе присутствует смесь операций ввода-вывода и вычислений, или если в одной и той же программе выполняются разные вычисления, можно решать эти задачи, запуская код в конкурентном, а не в последовательном режиме. Это способствует сокращению времени, необходимого программе на выполнение определённых действий. Однако это не позволяет, например, выполнять вычисления одновременно. Для организации подобных вычислений применяется мультипроцессинг. Это — отдельная большая тема.
Уважаемые читатели! Как вы пишете асинхронный Python-код?
Реализация асинхронности в Python с модулем asyncio
Асинхронное программирование — это особенность современных языков программирования, которая позволяет выполнять операции, не дожидаясь их завершения. Асинхронность — одна из важных причин популярности Node.js.
Представьте приложение для поиска по сети, которое открывает тысячу соединений. Можно открывать соединение, получать результат и переходить к следующему, двигаясь по очереди. Однако это значительно увеличивает задержку в работе программы. Ведь открытие соединение — операция, которая занимает время. И все это время последующие операции находятся в процессе ожидания.
А вот асинхронность предоставляет способ открытия тысячи соединений одновременно и переключения между ними. По сути, появляется возможность открыть соединение и переходить к следующему, ожидая ответа от первого. Так продолжается до тех пор, пока все не вернут результат.
На графике видно, что синхронный подход займет 45 секунд, в то время как при использовании асинхронности время выполнения можно сократить до 20 секунд.
Где асинхронность применяется в реальном мире?
Асинхронность больше всего подходит для таких сценариев:
Разница в понятиях параллелизма, concurrency, поточности и асинхронности
Параллелизм — это выполнение нескольких операций за раз. Многопроцессорность — один из примеров. Отлично подходит для задач, нагружающих CPU.
Concurrency — более широкое понятие, которое описывает несколько задач, выполняющихся с перекрытием друг друга.
Поточность — поток — это отдельный поток выполнения. Один процесс может содержать несколько потоков, где каждый будет работать независимо. Отлично подходит для IO-операций.
Асинхронность — однопоточный, однопроцессорный дизайн, использующий многозадачность. Другими словами, асинхронность создает впечатление параллелизма, используя один поток в одном процессе.
Составляющие асинхронного программирования
Разберем различные составляющие асинхронного программирования подробно. Также используем код для наглядности.
Сопрограммы
Сопрограммы (coroutine) — это обобщенные формы подпрограмм. Они используются для кооперативных задач и ведут себя как генераторы Python.
Пример сопрограммы
Python 3.5; async/await
Тихо и незаметно (с), вышел Python версии 3.5! И, безусловно, одно из самых интересных нововведений релиза является новый синтаксис определения сопрограмм с помощью ключевых слов async/await, далее в статье об этом.
Поверхностный просмотр «PEP 0492 — Coroutines with async and await syntax» по началу оставил у меня вопрос «Зачем это надо». Сопрограммы удовлетворительно реализуются на расширенных генераторах и на первый взгляд может показаться, что все свелось к замене yield from на await, а декоратора, создающего сопрограмму на async. Сюда можно добавить и возникающее ощущение, что все это сделано исключительно для использования с модулем asyncio.
Но это, конечно же, не так, тема глубже и интереснее.
coroutine
Главное, наверное, это то, что теперь сопрограмма в Python — это специальный объект native coroutine, а не каким-то специальным образом оформленный генератор или еще что-то. Этот объект имеет методы и функции стандартной библиотеки для работы с ним. То есть теперь, это объект, определяемый как часть языка.
await
К сожалению, не нашел в документации и PEP краткое определение для чего введено это новое ключевое слово. Рискну сформулировать его сам: Ключевое слово await указывает, что при выполнении следующего за ним выражения возможно переключение с текущей сопрограммы на другую или на основной поток выполнения.
Соответственно выражение после await тоже не простое, это должен быть awaitable объект.
awaitable object
async
Примеры на использование асинхронных итераторов и контекст менеджеров в документации и PEP достаточно, usecase в общем-то понятен и все логично. Непонятно только одно — зачем использовать версии магических методов с другими именами, ведь они все равно объявляются с использованием `async def`. Видимо, это что-то, связанное с особенностями реализации, другого объяснения не вижу.
Как это готовить?
Изучение какой-то новой фичи языка или библиотеки быстро упирается в вопрос, как и где это использовать. И более глубокое изучение, на мой взгляд, стоит продолжать уже на практическом примере. Для меня, если тема связана с сопрограммами, асинхронностью и тому подобными вещами, такой практический пример — это написание хеллоуворда, использующего event-driven подход. Формулировка задачи такая: «Вызов функции sleep должен остановить исполнение сопрограммы на определенное время».
Сопрограммы и event-driven прекрасно сочетаются, в другой моей статье более подробно, почему я так считаю. И пример такого рода хорошо нам продемонстрирует почти все возможности и нюансы использования сопрограмм.
Развитие этой идеи: «async/await coroutine and event-driven», можно посмотреть по этой ссылке. Оно еще сырое, но кроме продемонстрированного переключения по событию «timeout», реализовано переключение сопрограмм по событиям «I/O ready» и «system sygnal». В качестве демо, есть пример асинхронного echo server.
Введение в асинхронное программирование на Python
Всем привет. Подготовили перевод интересной статьи в преддверии старта базового курса «Разработчик Python».
Введение
Асинхронное программирование – это вид параллельного программирования, в котором какая-либо единица работы может выполняться отдельно от основного потока выполнения приложения. Когда работа завершается, основной поток получает уведомление о завершении рабочего потока или произошедшей ошибке. У такого подхода есть множество преимуществ, таких как повышение производительности приложений и повышение скорости отклика.
В последние несколько лет асинхронное программирование привлекло к себе пристальное внимание, и на то есть причины. Несмотря на то, что этот вид программирования может быть сложнее традиционного последовательного выполнения, он гораздо более эффективен.
Например, вместо того, что ждать завершения HTTP-запроса перед продолжением выполнения, вы можете отправить запрос и выполнить другую работу, которая ждет своей очереди, с помощью асинхронных корутин в Python.
Асинхронность – это одна из основных причин популярности выбора Node.js для реализации бэкенда. Большое количество кода, который мы пишем, особенно в приложениях с тяжелым вводом-выводом, таком как на веб-сайтах, зависит от внешних ресурсов. В нем может оказаться все, что угодно, от удаленного вызова базы данных до POST-запросов в REST-сервис. Как только вы отправите запрос в один из этих ресурсов, ваш код будет просто ожидать ответа. С асинхронным программированием вы позволяете своему коду обрабатывать другие задачи, пока ждете ответа от ресурсов.
Как Python умудряется делать несколько вещей одновременно?
1. Множественные процессы
Самый очевидный способ – это использование нескольких процессов. Из терминала вы можете запустить свой скрипт два, три, четыре, десять раз, и все скрипты будут выполняться независимо и одновременно. Операционная система сама позаботится о распределении ресурсов процессора между всеми экземплярами. В качестве альтернативы вы можете воспользоваться библиотекой multiprocessing, которая умеет порождать несколько процессов, как показано в примере ниже.
2. Множественные потоки
Еще один способ запустить несколько работ параллельно – это использовать потоки. Поток – это очередь выполнения, которая очень похожа на процесс, однако в одном процессе вы можете иметь несколько потоков, и у всех них будет общий доступ к ресурсам. Однако из-за этого написать код потока будет сложно. Аналогично, все тяжелую работу по выделению памяти процессора сделает операционная система, но глобальная блокировка интерпретатора (GIL) позволит только одному потоку Python запускаться в одну единицу времени, даже если у вас есть многопоточный код. Так GIL на CPython предотвращает многоядерную конкурентность. То есть вы насильно можете запуститься только на одном ядре, даже если у вас их два, четыре или больше.
3. Корутины и yield :
Корутины – это обобщение подпрограмм. Они используются для кооперативной многозадачности, когда процесс добровольно отдает контроль ( yield ) с какой-то периодичностью или в периоды ожидания, чтобы позволить нескольким приложениям работать одновременно. Корутины похожи на генераторы, но с дополнительными методами и небольшими изменениями в том, как мы используем оператор yield. Генераторы производят данные для итерации, в то время как корутины могут еще и потреблять данные.
4. Асинхронное программирование
Четвертый способ – это асинхронное программирование, в котором не участвует операционная система. Со стороны операционной системы у вас останется один процесс, в котором будет всего один поток, но вы все еще сможете выполнять одновременно несколько задач. Так в чем тут фокус?
Asyncio – модуль асинхронного программирования, который был представлен в Python 3.4. Он предназначен для использования корутин и future для упрощения написания асинхронного кода и делает его почти таким же читаемым, как синхронный код, из-за отсутствия callback-ов.
В следующем примере, мы запускаем 3 асинхронных таска, которые по-отдельности делают запросы к Reddit, извлекают и выводят содержимое JSON. Мы используем aiohttp – клиентскую библиотеку http, которая гарантирует, что даже HTTP-запрос будет выполнен асинхронно.
Использование Redis и Redis Queue RQ
Использование asyncio и aiohttp не всегда хорошая идея, особенно если вы пользуетесь более старыми версиями Python. К тому же, бывают моменты, когда вам нужно распределить задачи по разным серверам. В этом случае можно использовать RQ (Redis Queue). Это обычная библиотека Python для добавления работ в очередь и обработки их воркерами в фоновом режиме. Для организации очереди используется Redis – база данных ключей/значений.
В примере ниже мы добавили в очередь простую функцию count_words_at_url с помощью Redis.
Заключение
В качестве примера возьмем шахматную выставку, где один из лучших шахматистов соревнуется с большим количеством людей. У нас есть 24 игры и 24 человека, с которыми можно сыграть, и, если шахматист будет играть с ними синхронно, это займет не менее 12 часов (при условии, что средняя игра занимает 30 ходов, шахматист продумывает ход в течение 5 секунд, а противник – примерно 55 секунд.) Однако в асинхронном режиме шахматист сможет делать ход и оставлять противнику время на раздумья, тем временем переходя к следующему противнику и деля ход. Таким образом, сделать ход во всех 24 играх можно за 2 минуты, и выиграны они все могут быть всего за один час.
Это и подразумевается, когда говорят о том, что асинхронность ускоряет работу. О такой быстроте идет речь. Хороший шахматист не начинает играть в шахматы быстрее, просто время более оптимизировано, и оно не тратится впустую на ожидание. Так это работает.
По этой аналогии шахматист будет процессором, а основная идея будет заключаться в том, чтобы процессор простаивал как можно меньше времени. Речь о том, чтобы у него всегда было занятие.
На практике асинхронность определяется как стиль параллельного программирования, в котором одни задачи освобождают процессор в периоды ожидания, чтобы другие задачи могли им воспользоваться. В Python есть несколько способов достижения параллелизма, отвечающих вашим требованиям, потоку кода, обработке данных, архитектуре и вариантам использования, и вы можете выбрать любой из них.