16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит

16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит

Решение задач по теме «Количество информации» (10кл)

Пример 1. В коробке 32 карандаша, все карандаши разного цвета. Наугад вытащили красный. Какое количество информации при этом было получено?

Пример 2.В коробке 50 шаров, из них 40 белых и 10 чёрных. Определить количество информации в сообщении о вытаскивании наугад белого шара и чёрного шара.

Решение.
Вероятность вытаскивания белого шара
P1 = 40/50 = 0,8
Вероятность вытаскивания чёрного шара
P2 = 10/50 = 0,2
Количество информации о вытаскивании белого шара I1 = log2(1/0,8) = log21,25 = log1,25/log2 = 0,32 бит
Количество информации о вытаскивании чёрного шара I2 = log2(1/0,2) = log25 = log5/log2 » 2,32 бит
Ответ: 0,32 бит, 2,32 бит

Пример 4. Какое количество информации несет в себе сообщение о том, что нужная вам программа находится на одной из восьми дискет?

Пример 5. Заполнить пропуски числами:

а) 5 Кбайт = __ байт = __ бит, б) __ Кбайт = __ байт = 12288 бит; в) __ Кбайт = __ байт = 2 13 бит; г) __Гбайт =1536 Мбайт = __ Кбайт; д) 512 Кбайт = 2__ байт = 2__ бит.

Решение.
а) 5 Кбайт = 5120 байт =40 960 бит,
б) 1,5 Кбайт = 1536 байт = 12 288 бит;
в) 1 Кбайт = 2 10 байт = 2 13 бит;
г) 1,5 Гбайт = 1536 Мбайт = 1 572 864 Кбайт;
д) 512 Кбайт = 2 19 байт = 2 22 бит.

Пример 6. Какова мощность алфавита, с помощью которого записано сообщение, содержащее 2048 символов, если его объем составляет 1/512 часть одного мегабайта?

Решение.
1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2 i = N; 2 8 = 256 символов

Ответ: 1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2 i = N; 2 8 = 256 символов.

Решение.
Мощность компьютерного алфавита равна 256. Один символ несет 1 байт информации.
Значит, страница содержит 40*60=2400 байт информации. Объем всей информации в книге: 2400*150 = 360 000 байт.
Ответ: 360 000 байт.

Пример 8. Для передачи секретного сообщения используется код, состоящий из десяти цифр. При этом все цифры кодируются одним и тем же (минимально возможным) количеством бит. Определите информационный объем сообщения длиной в 150 символов.

Пример 9.В кодировке Unicode на каждый символ отводится два байта. Определите информационный объем слова из двадцати четырех символов в этой кодировке.

Решение.
I= K*i; I = 24*2 байт = 48 байт = 48*8бит = 384 бит.
Ответ: 384 бита.

Пример 10.В рулетке общее количество лунок равно 128. Какое количество информации мы получаем в зрительном сообщения об остановке шарика в одной из лунок?

Источник

Решение задач по теме «Количество информации»

Алфавитный подход к определению количества информации

РЕШЕНИЕ ЗАДАЧ

N=2 iiИнформационный вес символа, бит
NМощность алфавита
I=K*iKКоличество символов в тексте
IИнформационный объем текста

Возможны следующие сочетания известных (Дано) и искомых (Найти) величин:

ТипДаноНайтиФормула
1iNN=2 i
2Ni
3i,KII=K*i
4i,IK
5I, Ki
6N, KIОбе формулы
7N, IK
8I, KN

Задача 1. Получено сообщение, информационный объем которого равен 32 битам. чему равен этот объем в байтах?

Решение: В одном байте 8 бит. 32:8=4
Ответ: 4 байта.

Задача 2. Объем информацинного сообщения 12582912 битов выразить в килобайтах и мегабайтах.

Решение: Поскольку 1Кбайт=1024 байт=1024*8 бит, то 12582912:(1024*8)=1536 Кбайт и
поскольку 1Мбайт=1024 Кбайт, то 1536:1024=1,5 Мбайт
Ответ:1536Кбайт и 1,5Мбайт.

Задача 3. Компьютер имеет оперативную память 512 Мб. Количество соответствующих этой величине бит больше:

1) 10 000 000 000бит 2) 8 000 000 000бит 3) 6 000 000 000бит 4) 4 000 000 000бит Решение: 512*1024*1024*8 бит=4294967296 бит.
Ответ: 4.

Задача 4. Определить количество битов в двух мегабайтах, используя для чисел только степени 2.
Решение: Поскольку 1байт=8битам=2 3 битам, а 1Мбайт=2 10 Кбайт=2 20 байт=2 23 бит. Отсюда, 2Мбайт=2 24 бит.
Ответ: 2 24 бит.

Задача 5. Сколько мегабайт информации содержит сообщение объемом 2 23 бит?
Решение: Поскольку 1байт=8битам=2 3 битам, то
2 23 бит=2 23 *2 23 *2 3 бит=2 10 2 10 байт=2 10 Кбайт=1Мбайт.
Ответ: 1Мбайт

Задача 6. Один символ алфавита «весит» 4 бита. Сколько символов в этом алфавите?
Решение:
Дано:

Задача 7. Каждый символ алфавита записан с помощью 8 цифр двоичного кода. Сколько символов в этом алфавите?
Решение:
Дано:

Задача 8. Алфавит русского языка иногда оценивают в 32 буквы. Каков информационный вес одной буквы такого сокращенного русского алфавита?
Решение:
Дано:

Задача 9. Алфавит состоит из 100 символов. Какое количество информации несет один символ этого алфавита?
Решение:
Дано:

Задача 10. У племени «чичевоков» в алфавите 24 буквы и 8 цифр. Знаков препинания и арифметических знаков нет. Какое минимальное количество двоичных разрядов им необходимо для кодирования всех символов? Учтите, что слова надо отделять друг от друга!
Решение:
Дано:

Задача 11. Книга, набранная с помощью компьютера, содержит 150 страниц. На каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге? Ответ дайте в килобайтах и мегабайтах
Решение:
Дано:

Задача 12. Информационный объем текста книги, набранной на компьютере с использованием кодировки Unicode, — 128 килобайт. Определить количество символов в тексте книги.
Решение:
Дано:

Задача 13.Информационное сообщение объемом 1,5 Кб содержит 3072 символа. Определить информационный вес одного символа использованного алфавита
Решение:
Дано:

Задача 14.Сообщение, записанное буквами из 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?
Решение:
Дано:

Задача 15. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составил 1/16 часть мегабайта?
Решение:
Дано:

Задача 16. Объем сообщения, содержащего 2048 символов,составил 1/512 часть мегабайта. Каков размер алфавита, с помощью которого записано сообщение?
Решение:
Дано:

Источник

16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит

Автоматическое устройство осуществило перекодировку информационного сообщения на русском языке, первоначально записанного в 16-битном коде Unicode, в 8-битную кодировку КОИ-8. При этом информационное сообщение уменьшилось на 480 бит. Какова длина сообщения в символах?

1 символ в коде Unicode кодируется 16-ю битами, 1 символ в коде КОИ-8 — 8-ю битами. Количество символов при перекодировке не меняется, поэтому обозначим его за 16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит.

16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит

Решая его найдём 16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно битследовательно, 16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит.

Автоматическое устройство осуществило перекодировку информационного сообщения на русском языке длиной в 20 символов, первоначально записанного в 16-битном коде Unicode, в 8-битную кодировку КОИ-8. На сколько байт уменьшилось при этом информационное сообщение? В ответе запишите только число.

16 бит = 2 байт, 8 бит = 1 байт.

Текстовый документ, состоящий из 4096 символов, хранился в 16-битной кодировке Unicode. Этот документ был преобразован в 8-битную кодировку Windows-1251. Укажите, на сколько Кбайт уменьшился объем файла. В ответе запишите только число.

4096 = 1024⋅4, 16 бит = 2 байта, 8 бит = 1 байт

Было в Unicode: 2 12 * 2 = 2 13 байт

Стало в Windows-1251: 2 12 байт.

Текстовый документ, состоящий из 5120 символов, хранился в 8-битной кодировке КОИ-8. Этот документ был преобразован в 16-битную кодировку Unicode. Укажите, какое дополнительное количество Кбайт потребуется для хранения документа. В ответе запишите только число.

Объем информации в кодировке КОИ-8: 5120 символов * 1 байт = 5120 байт.

Объем информации в 16-битной кодировке Unicode: 5120 символов * 2 байта = 10240 байт.

5120 : 1024 = 5 Кбайт.

Текстовый документ хранился в 8-битной кодировке КОИ-8. Этот документ был преобразован в 16-битную кодировку Unicode, при этом размер памяти, необходимой для хранения документа увеличился на 4 Кбайт. При этом хранится только последовательность кодов символов. Укажите, сколько символов в документе. В ответе запишите только число.

Обозначим количество символов в документе за 16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит.

Тогда объем информации в кодировке КОИ-8: 16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно битбит = 16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно битбайт

Объем информации в 16-битной кодировке Unicode: 16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно битбит = 16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно битбайт.

Откуда 16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит= 4096.

Источник

16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит

Для информации существуют свои единицы измерения информации. Если рассматривать сообщения информации как последовательность знаков, то их можно представлять битами, а измерять в байтах, килобайтах, мегабайтах, гигабайтах, терабайтах и петабайтах.

Давайте разберемся с этим, ведь нам придется измерять объем памяти и быстродействие компьютера.

Единицей измерения количества информации является бит – это наименьшая (элементарная) единица.

Байт – основная единица измерения количества информации.

Байт – довольно мелкая единица измерения информации. Например, 1 символ – это 1 байт.

Производные единицы измерения количества информации

1 килобайт (Кб)=1024 байта =2 10 байтов

1 мегабайт (Мб)=1024 килобайта =2 10 килобайтов=2 20 байтов

1 гигабайт (Гб)=1024 мегабайта =2 10 мегабайтов=2 30 байтов

1 терабайт (Гб)=1024 гигабайта =2 10 гигабайтов=2 40 байтов

Методы измерения количества информации

Итак, количество информации в 1 бит вдвое уменьшает неопределенность знаний. Связь же между количеством возможных событий N и количеством информации I определяется формулой Хартли:

Алфавитный подход к измерению количества информации

При этом подходе отвлекаются от содержания (смысла) информации и рассматривают ее как последовательность знаков определенной знаковой системы. Набор символов языка, т.е. его алфавит можно рассматривать как различные возможные события. Тогда, если считать, что появление символов в сообщении равновероятно, по формуле Хартли можно рассчитать, какое количество информации несет в себе каждый символ:

Вероятностный подход к измерению количества информации

Этот подход применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:

I – количество информации,

N – количество возможных событий,

Pi – вероятность i-го события.

Задача 1.

Шар находится в одной из четырех коробок. Сколько бит информации несет сообщение о том, в какой именно коробке находится шар.

Имеется 4 равновероятных события (N=4).

По формуле Хартли имеем: 4=2 i . Так как 2 2 =2 i , то i=2. Значит, это сообщение содержит 2 бита информации.

Задача 2.

Чему равен информационный объем одного символа русского языка?

В русском языке 32 буквы (буква ё обычно не используется), то есть количество событий будет равно 32. Найдем информационный объем одного символа. I=log2 N=log2 32=5 битов (2 5 =32).

Примечание. Если невозможно найти целую степень числа, то округление производится в большую сторону.

Задача 3.

Чему равен информационный объем одного символа английского языка?

Задача 4.

Световое табло состоит из лампочек, каждая из которых может находиться в одном из двух состояний (“включено” или “выключено”). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 50 различных сигналов?

С помощью N лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2 N сигналов.

2 5 6 , поэтому пяти лампочек недостаточно, а шести хватит. Значит, нужно 6 лампочек.

Задача 5.

Метеостанция ведет наблюдения за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100, которое записывается при помощи минимально возможного количества битов. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.

В данном случае алфавитом является множество чисел от 0 до 100, всего 101 значение. Поэтому информационный объем результатов одного измерения I=log2101. Но это значение не будет целочисленным, поэтому заменим число 101 ближайшей к нему степенью двойки, большей, чем 101. это число 128=2 7 . Принимаем для одного измерения I=log2128=7 битов. Для 80 измерений общий информационный объем равен 80*7 = 560 битов = 70 байтов.

Задача 6.

Определите количество информации, которое будет получено после подбрасывания несимметричной 4-гранной пирамидки, если делают один бросок.

Пусть при бросании 4-гранной несимметричной пирамидки вероятности отдельных событий будут равны: p1=1/2, p2=1/4, p3=1/8, p4=1/8.

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

Задача 7.

Задача 8.

Оцените информационный объем следующего предложения:

Тяжело в ученье – легко в бою!

Так как каждый символ кодируется одним байтом, нам только нужно подсчитать количество символов, но при этом не забываем считать знаки препинания и пробелы. Всего получаем 30 символов. А это означает, что информационный объем данного сообщения составляет 30 байтов или 30 * 8 = 240 битов.

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 1.6. Измерение информации

Информатика. 7 класса. Босова Л.Л. Оглавление

1.6.1. Алфавитный подход к измерению информации

Одно и то же сообщение может нести много информации для одного человека и не нести её совсем для другого человека. При таком подходе количество информации определить однозначно затруднительно.

Алфавитный подход позволяет измерить информационный объём сообщения, представленного на некотором языке (естественном или формальном), независимо от его содержания.

Для количественного выражения любой величины необходима, прежде всего, единица измерения. Измерение осуществляется путём сопоставления измеряемой величины с единицей измерения. Сколько раз единица измерения «укладывается» в измеряемой величине, таков и результат измерения.

При алфавитном подходе считается, что каждый символ некоторого сообщения имеет определённый информационный вес — несёт фиксированное количество информации. Все символы одного алфавита имеют один и тот же вес, зависящий от мощности алфавита. Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется 1 бит.

Обратите внимание, что название единицы измерения информации «бит» (bit) происходит от английского словосочетания binary digit — «двоичная цифра».

За минимальную единицу измерения информации принят 1 бит. Считается, что таков информационный вес символа двоичного алфавита.

1.6.2. Информационный вес символа произвольного алфавита

Разрядность двоичного кода принято считать информационным весом символа алфавита. Информационный вес символа алфавита выражается в битах.

Задача 1. Алфавит племени Пульти содержит 8 символов. Каков информационный вес символа этого алфавита?

Решение. Составим краткую запись условия задачи.

16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит

Полная запись решения в тетради может выглядеть так:

16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит

1.6.3. Информационный объём сообщения

Информационный объём сообщения (количество информации в сообщении), представленного символами естественного или формального языка, складывается из информационных весов составляющих его символов.

Информационный объём сообщения I равен произведению количества символов в сообщении К на информационный вес символа алфавита i;I = К • i.

Задача 2. Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт?

16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит

Задача 3. Информационное сообщение объёмом 720 битов состоит из 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение?

16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит

1.6.4. Единицы измерения информации

1 байт = 8 битов

Бит и байт — «мелкие» единицы измерения. На практике для измерения информационных объёмов используются более крупные единицы:

1 килобайт = 1 Кб = 1024 байта = 2 10 байтов
1 мегабайт = 1 Мб = 1024 Кб = 2 10 Кб = 2 20 байтов
1 гигабайт = 1 Гб = 1024 Мб = 2 10 Мб = 2 20 Кб = 2 30 байтов
1 терабайт = 1 Тб = 1024 Гб = 2 10 Гб = 2 20 Мб = 2 30 Кб = 2 40 байтов

Задача 4. Информационное сообщение объёмом 4 Кбайта состоит из 4096 символов. Каков информационный вес символа используемого алфавита? Сколько символов содержит алфавит, с помощью которого записано это сообщение?

16 ричный код некоторого числа равен d75f5021 количество информации в сообщении о числе равно бит

Ответ: 8 битов, 256 символов.

Задача 5. В велокроссе участвуют 128 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер цепочкой из нулей и единиц минимальной длины, одинаковой для каждого спортсмена. Каков будет информационный объём сообщения, записанного устройством после того, как промежуточный финиш пройдут 80 велосипедистов?

Ответ: 70 байтов.

Самое главное.

При алфавитном подходе считается, что каждый символ некоторого сообщения имеет опредёленный информационный вес — несёт фиксированное количество информации.

1 бит — минимальная единица измерения информации.

Информационный объём сообщения I равен произведению количества символов в сообщении К на информационный вес символа алфавита i: I = K•i.

Байт, килобайт, мегабайт, гигабайт, терабайт — единицы измерения информации. Каждая следующая единица больше предыдущей в 1024 (210) раза.

Вопросы и задания.

1.Ознакомтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Используйте эти материалы при подготовке ответов на вопросы и выполнении заданий.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *